
INTRODUCTION TO LEBESGUE MEASURE: HANDOUT

ERIC WOFSEY

This handout has a quick guide to notation I will be using in class without
defining and two fairly technical examples that I may not have time to do fully in
class.

1. Notation

Some notation I will be using throughout the class:
• {x : P (x)} is the set of points x that have some property P (x). More

generally, {f(x) : P (x)} means the set of expressions f(x) where x is such
that P (x) holds. For example, {x : x > 2} is the set of numbers that are
greater than 2 an {x2 : x > 2} is the set of squares of numbers that are
greater than 2 (which is just equal to the set of numbers that are greater
than 4).
• R is the set of real numbers.
• Q is the set of rational numbers.
• If A and B are sets, then their difference (or the complement of B in A) is

A−B = {x : x ∈ A and x 6∈ B}.
• If A1, A2, A3, . . . are sets, then we write

∞⋃
n=1

An = A1 ∪A2 ∪A3 ∪ . . .

for their infinite union.
• For a < b real numbers,

[a, b] = {x : a ≤ x ≤ b}
[a, b) = {x : a ≤ x < b}
(a, b] = {x : a < x ≤ b}
(a, b) = {x : a < x < b}

Sets of this form are called intervals and their length is b− a.

2. The Cantor set

The Cantor set is an example of a fairly complicated Borel set whose measure
can be computed. Intuitively, we define the Cantor set as follows. Start with the
interval [0, 1], and then remove the middle third of the interval to get two intervals
[0, 1/3] ∪ [2/3, 1]. Then remove the middle thirds of each of those two intervals to
get four intervals, and then remove the middle thirds of each of the four intervals
to get eight intervals, and so on. What you’re left with after doing this infinitely
many times is called the Cantor set K. See Figure 1 for what the first few steps of
this look like.
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Figure 1. A picture of the Cantor set shamelessly stolen from Wikipedia.

More precisely, we define a sequence of finite unions of intervals An such that
An is the union of the middle thirds we remove at the nth stage of this process. In
particular, we have:

A1 = (1/3, 2/3)
A2 = (1/9, 2/9) ∪ (7/9, 8/9)
A3 = (1/27, 2/27) ∪ (7/27, 8/27) ∪ (19/27, 20/27) ∪ (25/27, 26/27)

. . .

In general, An is a union of 2n−1 intervals, each of which has length 1/3n. If we
really wanted to, we could write down an explicit formula for what An is, but it
would be messy and complicated so I won’t.

We now define A =
⋃
An and define the Cantor set to be the complement

K = [0, 1] − A. Since each An is a finite union of intervals, A is a Borel set, so K
is a Borel set. Furthermore, the sets An are disjoint and λ(An) = 2n−1/3n, so

λ(A) =
∑

λ(An) =
∞∑

n=1

2n−1

3n
.

If you’ve seen the formula for geometric series, you can compute that this sum is

λ(A) =
1
3
· 1

1− 2
3

= 1.

Thus λ(K) = λ([0, 1]) − λ(A) = 1 − 1 = 0. This sort of makes sense, because K
is a sort of infinitely scattered “dust” that we wouldn’t expect to have any length.
However, we could have chosen the lengths of the intervals we removed to be smaller
so that the measure was positive, even though the set would still look essentially
the same!

Also, the Cantor set is an example of a set which is uncountable but still has
measure 0. You can show that K is uncountable by observing that K is exactly
the set of numbers that have a base 3 expansion containing only the digits 0 and 2.
This is because A1 is the set of numbers whose first base 3 digit is 1, A2 is the set of
numbers whose second base 3 digit is 1, and so on. Thus for every infinite sequence
of 0s and 2s, we get an element of the Cantor set by considering the number having
that base 3 expansion. By a diagonalization argument similar to the proof that the
real numbers are uncountable, the set of such infinite sequences is uncountable.

For more information about the Cantor set and its many fascinating properties, a
good starting point is the Wikipedia page http://en.wikipedia.org/wiki/Cantor set.

3. An unmeasurable set

Here is a construction of a set on which Lebesgue measure cannot be defined.
First, recall the translation-invariance property of Lebesgue measure:
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Theorem. If A ⊆ R is measurable and x ∈ R, then A + x = {a + x : a ∈ A} is
measurable and λ(A+ x) = λ(A).

Intuitively, A+x is just A “moved to the right” by x on the line, so the measure
shouldn’t change (in two dimensions, this is related to the fact that congruent sets
have the same area).

Now we will construct a set whose measure cannot be defined in any way that
is consistent with translation-invariance. Let A = [0, 1) and for each x ∈ A, define

Qx = {y ∈ A : x− y ∈ Q}.

Now I claim that for any x, y ∈ A, either Qx∩Qy = ∅ or Qx = Qy. Indeed, suppose
Qx ∩ Qy is nonempty and let z be some element of it. Then x − z and y − z are
rational, so y − x = (y − z)− (x− z) is rational. Let w ∈ Qx, so x−w is rational.
Then y − w = (y − x) + (x− w) is rational, so w ∈ Qy. By a similar argument we
can show that if w ∈ Qy then w ∈ Qx, so we conclude that Qx = Qy.

Now from each set Qx pick a single element and form a new set B from these
elements. That is, B is a set such that B ∩Qx contains exactly one point for each
x. This is possible because distinct sets Qx are disjoint.

Now for each q ∈ Q ∩ A we define a subset Bq ⊆ A as follows. First consider
B + q ⊆ A + q = [q, q + 1). We want to just say Bq = B + q, but we can’t
because B + q may not be contained in [0, 1). So what we do is translate back the
part of B + q that is bigger than 1. More precisely, let Cq = (B + q) ∩ [q, 1) and
Dq = (B + q) ∩ [1, 1 + q) and define

Bq = Cq ∪ (Dq − 1).

Note that Cq ⊆ [q, 1) and Dq − 1 ⊆ [0, q) so they are disjoint. Now suppose we
could define the measure of B. Then by translation-invariance, for each q we would
have:

λ(Bq) = λ(Cq) + λ(Dq − 1)
= λ(Cq) + λ(Dq)
= λ(B + q)
= λ(B).

But now I claim that every point x ∈ A is in Bq for exactly one value of q. Indeed,
B contains exactly one point y from Qx, and x − y ∈ Q. If x ≥ y, then we let
q = x − y and then x = y + q ∈ Dq ⊆ Bq, and if x < y, we let q = x − y + 1 and
then x = y + q − 1 ∈ Cq − 1 ⊆ Bq. Conversely, if x ∈ Bq, then x − q or x − q + 1
must be in B and hence must be y (since x− q or x− q+ 1 is in Qx), so this is the
only q that works.

Thus we can split up A =
⋃

q∈Q∩ABq as a disjoint union. By countable additivity
(since there are only countably many q),

λ(A) =
∑

q

λ(Bq).

Now λ(A) = 1 since A is just [0, 1), and λ(Bq) = λ(B) for all q, so this is just

1 =
∑

q

λ(B) = λ(B) + λ(B) + λ(B) + . . . .
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If λ(B) = 0, the right-hand side is 0, and if λ(B) > 0, the right-hand side is infinite.
Thus there is no possible value of λ(B) that makes this equation hold! From this
we conclude that B is unmeasurable–its measure cannot be defined.

Intuitively, what’s going on is that we’ve split [0, 1) into countably many sets, all
of which must have the same size because they’re all just the same set broken into
pieces and translated. This is impossible by countable additivity, because there is
no number that you can add together infinitely many copies of to get 1.


