Game Theory
Notes for Classes 1 and 2


We look at combinatorial games, which are two-player deterministic games in which the player who cannot move loses, and the game is guaranteed to end decisively (no ties or draws). We call the two players Left and Right, which by convention correspond to Blue and Red in Hackenbush and Vertical and Horizontal in Cutcakes.


The goal is to figure out which player will win from a given starting position. Note that when we say that a player will win, this assumes perfect play, meaning that both players always make the best move available to them. The sign of a position tells us who will win: 

Positive value means a winning position for Left


Negative value means a winning position for Right


Zero value means a position in which the second player will win.

The empty position is an example of a zero value, since whoever has to move first can’t possibly make a move, so the second player will win. One way to figure out the sign of a position is to try playing it out with Left moving first, then with Right moving first, by trying out all the possibilities (“if Left moves first and does this, then Right can win by doing that, but if Left does this…”), but this may be too hard for complicated positions.


More than just who is winning, we want to know how much a player is winning by. We assign values to positions on a numerical scale on which the units of value are in moves. This means that a Hackenbush position in which there is nothing but three blue edges (aka stalks) will have value 3, because Left will have 3 moves to make before he runs out, and Right cannot possibly take away these moves from him. Note that this isn’t true in general: we can’t just count edges of each color because it’s possible for a player to make their opponent’s edges fall off.


We add two positions by placing them side by side and allowing both players to make moves in either position. A player isn’t bound to play in one part or another; each player can move in whichever position he or she wants. Some positions naturally break down into the sum of smaller positions, which we call components; for example, each move in Cutcake will split a rectangle into two smaller rectangles, so the number of components increases by one each move. To find the value for the overall position, we add up the values of its components.


We can negate a position by switching the roles of the two players in the position – in Hackenbush, this means replacing blue edges with red ones and blue edges with red ones, and in Cutcake this is the same as rotating the rectangle 90 degrees, and thus switching vertical and horizontal. Negating a position also negates the value, since whatever advantage Left has in the original, Right will have in the new game and vice-versa. The sum of a position and its negation is 0, representing the algebraic fact that X + (-X) = 0. The second player can win the position of X + (-X) by playing a mirror strategy by always copying their opponent’s move in the other component.

One way to determine the value of a position is through guess-and-check. We do this by comparing the position’s value to positions with known values. To compare two positions G and H, add one position to the negative of the other and see who wins by playing out the possibilities. In the sum G + (- H), we give Left an advantage of magnitude G and Right an advantage of magnitude H, and which player wins tells us which of G and H gave the larger advantage:

G > H if and only if G + (- H) > 0

G < H if and only if G + (- H) < 0

G = H if and only if G + (- H) = 0

For example, if we wanted to check how a position G compares to 2, we could counterbalance it by playing G + (-2) by adding G and, say, two red Hackenbush stalks. If we find that Right wins this sum, then G < 2 and we can try to get more details on its value by comparing G to 1 in a similar fashion. We could also compare G to 1½ by playing the games G + G + (-3), a position with two copies of G and one copy of -3. If, for example, we find that G + G + (-3) is a win for Left if Right goes first and a win for Right if Left goes first, then G + G + (-3) = 0, so we know that G is exactly 1½.
More efficient ways to find the value look at what the value of a game will be after each move possible move by either player. We can express a position in this way using curly brace notation,

G = {L | R},
where L and R represent Left’s and Right’s possible moves, respectively. This notation tells us “G is a position in which Left can move from G to a position L and Right can move from G to a position R”. So, L will remain after Left makes a move and R will remain after Right makes a move. We can draw out the positions G, L, and R as pictures of actual game positions, or we can write in their actual values. Since each player may have more than one possible move in a position (games would be pretty boring if you didn’t make decisions!), L and R may be lists of possible moves rather than single moves, which are sometimes called options. For example, the position


G = {-3, 0, ½, ½ | 1, 5}
has six options, four for Left and two for Right. The expression for G tells us that Left has a move he can make from the position G to a position of value -3, another move to a 0 position, and two moves to position of value ½, whereas Right can make a move that leaves a position of value 1, or she can move to a position of value 5. When a player has no possible moves from a position, we leave their side of the vertical line blank.
The fact that we’re only looking at moves under perfect play allows us to ignore bad moves. We call an option dominated if it is worse for the player choosing it than another one of their options – “worse than” means “less then” for Left and “greater than” for Right. The Dominance Principle lets us get rid of dominated options because no good player will make them anyway, so it doesn’t matter that they exist. 
For options whose values are numbers, the Dominance Principle narrows down each list of options to a single value. We may also treat repeated options as if they were listed only once. For G = {-3, 0, ½, ½ | 1, 5}, we can remove one of the duplicated ½’s for Left, leaving 

G = {-3, 0, ½, ½ | 1, 5}, since the fact that he has two ways to move to ½ doesn’t help him more that having one move to ½. Since Left wants to move to as big a value as possible, we can remove the options -3 and 0, which are worse to him than ½. Likewise Right prefers negative values, so she won’t choose 5 when she can choose 1, so we can remove the option 5. So, we have simplified the game G into

G = {½  | 1}

When we’ve expressed a game as G = {L | R} with L and R each being a single number and L < R, we can apply the Simplicity Rule to find the numerical value of G. To do so, we find the simplest number G that is between L and R. The numbers are below listed in order of simplicity, from simplest to least simple:

0, 1 or -1, 2 or -2, 3 or -3, …

1/2 or -1/2, 3/2 or -3/2, 5/2 or -5/2, …

1/4 or -1/4, 3/4 or -3/4, 5/4 or -5/4, ….
1/8 or -1/8, …
…

In other words, we look try to find a whole number G such that L < G < R, picking the one closest to zero if there is more than one choice. If there are no whole numbers in the interval, we check halves, then quarters, then eights, and so on. If L or R are empty, we can still use the Simplicity Rule, but we ignore the restriction L < G if L doesn’t exist or G < R if R doesn’t exist.

Some values that commonly show up that you can find using the Simplicity Rules are:
½ = {0 | 1}

-½ = {-1 | 0)

¼ = {0 | 1/2}

0 = { | } (check this one!)

1 = {0 | }

2 = {1 | }

3 = {2 | }

…

-1 =  { | 0}

-2 =  { | -1}

-3 =  { | -2}

…

0 = {L | R} if L<0 and R>0
Using the Simplicity Rule, we know that G = {½  | 1}=  ¾.
For positions with numerical values, negating positions and adding them can be done easily by negating or add their values. I’ll write out the general formulas for doing so in curly brace notation for reference:

If G = {L | R}, then

-G = {-R | -L}

So, to negate positions, we switch Left and Right’s options, then negate them. 
The formula for adding positions is: 
given
G = {L1 | R1}


H = {L2 | R2},
we have


G + H = {L1 + H, G + L2 | R1 + H, G + R2}.

Positions that have the same value are functionally equivalent (I’ll call this the Equivalence Principle). When playing the sum of positions, we can replace any position with one of equal value (preferably a simpler one), and this won’t change the outcome or the value of the sum. We can likewise replace any option listed for a position with one of equal value, and the overall value won’t change. For example, we have ½ = {0 | 1}, regardless if the “1” is represented as {0 | 6}, {½  | 2}, or {0 | } – they’re all the same “1”. 
While there rules apply for all games, the game of Hackenbush contains another special type of replacement. By the Colon Principle, we may take some region of the picture (some set of stalks) that is connected to the rest of the picture at only one point, and replace that region with any other one of equal value. In checking that the values are equal, we treat the point of attachment as the ground. The Colon Principle is a powerful tool because it lets us simplify Hackenbush pictures in mid-air without evaluating them beforehand.
