

	Any intersection of subspaces of V is a subspace of V . If $\mathrm{S}_{1}, \mathrm{~S}_{2}$ are nonempty subsets of V , their sum is $S_{1}+S_{2}=\left\{x+y \mid x \in S_{1}, y \in S_{2}\right\}$. V is the direct sum of W_{1} and $\mathrm{W}_{2}\left(V=W_{1} \oplus W_{2}\right)$ if W_{1} and W_{2} are subspaces of V such that $W_{1} \cap W_{2}=\{0\}$ and $W_{1}+W_{2}=V$. Then each element in V can be written uniquely as $w_{1}+w_{2}$ where $w_{1} \in W_{1}, w_{2} \in W_{2} . W_{1}, W_{2}$ are complementary. $W_{1}+W_{2}\left(W_{1} \wedge W_{2}\right)$ is the smallest subspace of V containing W_{1} and W_{2}, i.e. any subspace containing W_{1} and W_{2} contains $W_{1}+W_{2}$. For a subspace W of $\mathrm{V}, v+W=\{v+w \mid w \in W\}$ is the coset of W containing v . - $v_{1}+W=v_{2}+W$ iff $v_{1}-v_{2} \in W$. - The collection of cosets $V / W=\{v+W \mid v \in V\}$ is called the quotient (factor) space of V modulo W . It is a vector space with the operations $\begin{aligned} & \circ\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W \\ & \circ \quad a(v+W)=a v+W \end{aligned}$
1-3	Linear Combinations and Dependence A vector $v \in V$ is a linear combination of vectors of $S \subseteq V$ if there exist a finite number of vectors $u_{1}, u_{2}, \ldots u_{n} \in S$ and scalars $a_{1}, a_{2}, \ldots a_{n} \in F$ such that v is a linear combination of $u_{1}, u_{2}, \ldots u_{n}$. $v=a_{1} u_{1}+\cdots+a_{n} u_{n} .$ The span of S , span(S), is the set consisting of all linear combinations of the vectors in S . By definition, $\operatorname{span}(\phi)=\{0\}$. S generates (spans) V if $\operatorname{span}(\mathrm{S})=\mathrm{V}$. The span of S is the smallest subspace containing S, i.e. any subspace of V containing S contains span(S). A subset $S \subseteq V$ is linearly (in)dependent if there (do not) exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots u_{n} \in S$ and scalars $a_{1}, a_{2}, \ldots a_{n}$, not all 0 , such that $a_{1} u_{1}+\cdots+a_{n} u_{n}=0$ Let S be a linearly independent subset of V . For $v \in S-V, S \cup\{v\}$ is linearly dependent iff $v \in \operatorname{span}(S)$.
1-4	Bases and Dimension A (ordered) basis β for V is a (ordered) linearly independent subset of V that generates V . Ex. $e_{1}=(1,0, \ldots 0), e_{2}=(0,1, \ldots 0), \ldots e_{n}=(0,0, \ldots 1)$ is the standard ordered basis for F^{n}. A subset β of V is a basis for V iff each $v \in V$ can be uniquely expressed as a linear combination of vectors of β. Any finite spanning set S for V can be reduced to a basis for V (i.e. some subset of S is a basis). Replacement Theorem: (Steinitz) Suppose V is generated by a set G with n vectors, and let L be a linearly independent subset of V with m vectors. Then $m \leq n$ and there exists a

	subset H of G containing $n-m$ vectors such that $L \cup H$ generates V . Pf. Induct on m . Use induction hypothesis for $\left\{v_{1}, \ldots v_{m}\right\}$; remove a u_{1} and replace by v_{m+1}. Corollaries: - If V has a finite basis, every basis for V contains the same number of vectors. The unique number of vectors in each basis is the dimension of $\mathrm{V}(\operatorname{dim}(\mathrm{V}))$. - Suppose $\operatorname{dim}(\mathrm{V})=\mathrm{n}$. Any finite generating set/ linearly independent subset contains $\geq \mathrm{n} / \leq \mathrm{n}$ elements, can be reduced/ extended to a basis, and if the set contains n elements, it is a basis. Subsets of $\mathrm{V}, \operatorname{dim}(\mathrm{V})=\mathrm{n}$ Let W be a subspace of a finite-dimensional vector space V . Then $\operatorname{dim}(\mathrm{W}) \leq \operatorname{dim}(\mathrm{V})$. If $\operatorname{dim}(\mathrm{W})=\operatorname{dim}(\mathrm{V})$, then $\mathrm{W}=\mathrm{V}$. $\begin{aligned} & \operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right) \\ & \operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}(V / W) \end{aligned}$ The dimension of V / W is called the codimension of V in W .
1-5	Infinite-Dimensional Vector Spaces Let \mathcal{F} be a family of sets. A member M of \mathcal{F} is maximal with respect to set inclusion if M is contained in no member of \mathcal{F} other than M . (\mathcal{F} is partially ordered by \subseteq.) A collection of sets \mathcal{C} is a chain (nest, tower) if for each A , B in \mathcal{C}, either $A \subseteq B$ or $B \subseteq A .(\mathcal{F}$ is totally ordered by \subseteq.) Maximal Principle: [equivalent to Axiom of Choice] If for each chain $\mathcal{C} \subseteq \mathcal{F}$, there exists a member of \mathcal{F} containing each member of \mathcal{C}, then \mathcal{F} contains a maximal member. A maximal linearly independent subset of $S \subseteq V$ is a subset B of S satisfying (a) B is linearly independent. (b) The only linearly independent subset of S containing B is B. Any basis is a maximal linearly independent subset, and a maximal linearly independent

	subset of a generating set is a basis for V . Let S be a linearly independent subset of V. There exists a maximal linearly independent subset (basis) of V that contains S . Hence, every vector space has a basis. $\underline{\text { Pf. }} \mathcal{F}=$ linearly independent subsets of V . For a chain \mathcal{C}, take the union of sets in \mathcal{C}, and apply the Maximal Principle. Every basis for a vector space has the same cardinality. Suppose $S_{1} \subseteq S_{2} \subseteq V, \mathrm{~S}_{1}$ is linearly independent and S_{2} generates V . Then there exists a basis such that $S_{1} \subseteq \beta \subseteq S_{2}$. Let β be a basis for V , and S a linearly independent subset of V . There exists $S_{1} \subseteq \beta$ so $S \cup S_{1}$ is a basis for V .
1-6	Modules A left/right R-module ${ }_{R} M / M_{R}$ over the ring R is an abelian group ($\mathrm{M},+$) with addition and scalar multiplication $(R \times M \rightarrow M$ or $M \times R \rightarrow M)$ defined so that for all $r, s \in R$ and $x, y \in M$, Modules are generalizations of vector spaces. All results for vector spaces hold except ones depending on division (existence of inverse in R). Again, a basis is a linearly independent set that generates the module. Note that if elements are linearly independent, it is not necessary that one element is a linear combination of the others, and bases do not always exist. A free module with n generators has a basis with n elements. V is finitely generated if it contains a finite subset spanning V . The rank is the size of the smallest generating set. Every basis for V (if it exists) contains the same number of elements.
1-7	Algebras A linear algebra over a field F is a vector space \mathcal{A} over F with multiplication of vectors defined so that for all $x, y, z \in \mathcal{A}, c \in F$, If there is an element $1 \in \mathcal{A}$ so that $1 x=x 1=x$, then 1 is the identity element. \mathcal{A} is commutative if $x y=y x$. Polynomials made from vectors (with multiplication defined as above), linear transformations, and $n \times n$ matrices (see Chapters 2-3) all form linear algebras.

2	Matrices
2-1	Matrices A $m \times n$ matrix has m rows and n columns arranged filled with entries from a field F (or ring R). $A_{i j}=A(i, j)$ denotes the entry in the th column and th row of A . Addition and scalar multiplication is defined component-wise: $\begin{gathered} (A+B)_{i j}=A_{i j}+B_{i j} \\ (c A)_{i j}=c A_{i j} \end{gathered}$ The $n \times n$ matrix of all zeros is denoted O_{n} or just O .
2-2	Matrix Multiplication and Inverses Matrix product: Let A be a $m \times n$ and B be a $n \times p$ matrix. The product AB is the $m \times p$ matrix with entries $(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}, 1 \leq i \leq m, 1 \leq j \leq p$ Interpretation of the product $A B$: 1. Row picture: Each row of A multiplies the whole matrix B. 2. Column picture: A is multiplied by each column of B. Each column of $A B$ is a linear combination of the columns of A , with the coefficients of the linear combination being the entries in the column of B. 3. Row-column picture: $(A B)_{i j}$ is the dot product of row I of A and column j of B. 4. Column-row picture: Corresponding columns of A multiply corresponding rows of B and add to AB. Block multiplication: Matrices can be divided into a rectangular grid of smaller matrices, or blocks. If the cuts between columns of A match the cuts between rows of B, then you can multiply the matrices by replacing the entries in the product formula with blocks (entry i, j is replaced with block i,j, blocks being labeled the same way as entries). The identity matrix I_{n} is a $n \times n$ square matrix with ones down the diagonal, i.e. $\left(I_{n}\right)_{i j}=\delta_{i j}=\left\{\begin{array}{l} 1 \text { if } i=j \\ 0 \text { if } i \neq j \end{array}\right.$ A is invertible if there exists a matrix A^{-1} such that $A A^{-1}=A^{-1} A=I$. The inverse is unique, and for square matrices, any inverse on one side is also an inverse on the other side. $A B \neq B A$: Not commutative Note that any 2 polynomials of the same matrix commute. A nxn matrix A is either a zero divisor (there exist nonzero matrices B, C such that $A B=$ $C A=\mathcal{O}$) or it is invertible.

3	Linear Transformations
3-1	Linear Transformations For vector spaces V and W over F , a function $T: V \rightarrow W$ is a linear transformation (homomorphism) if for all $x, y \in V$ and $c \in F$, (a) $T(x+y)=T(x)+T(y)$ (b) $T(c x)=c T(x)$ It suffices to verify $T(c x+y)=c T(x)+T(y)$. $T(0)=0$ is automatic. $T\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(x_{i}\right)$ Ex. Rotation, reflection, projection, rescaling, derivative, definite integral Identity I_{v} and zero transformation T_{0} An endomorphism (or linear operator) is a linear transformation from V into itself. T is invertible if it has an inverse T^{-1} satisfying $T T^{-1}=I_{W}, T^{-1} T=I_{V}$. If T is invertible, V and W have the same dimension (possibly infinite). Vector spaces V and W are isomorphic if there exists a invertible linear transformation (an isomorphism, or automorphism if $\mathrm{V}=\mathrm{W}) T: V \rightarrow W$. If V and W are finite-dimensional, they are isomorphic iff $\operatorname{dim}(\mathrm{V})=\operatorname{dim}(\mathrm{W}) . \mathrm{V}$ is isomorphic to $F^{\operatorname{dim}(\mathrm{V})}$. The space of all linear transformations $\mathcal{L}(V, W)=\operatorname{Hom}(V, W)$ from V to W is a vector space over F. The inverse of a linear transformation and the composite of two linear transformations are both linear transformations. The null space or kernel is the set of all vectors x in V such that $\mathrm{T}(\mathrm{x})=0$. $N(T)=\{x \in V \mid T(x)=0\}$ The range or image is the subset of W consisting of all images of vectors in V . $R(T)=\{T(x) \mid x \in V\}$ Both are subspaces. nullity (T) and $\operatorname{rank}(T)$ denote the dimensions of $N(T)$ and $R(T)$, respectively. If $\beta=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ is a basis for V , then $R(T)=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots T\left(v_{n}\right)\right\}\right)$. Dimension Theorem: If V is finite-dimensional, nullity $(\mathrm{T})+\operatorname{rank}(\mathrm{T})=\operatorname{dim}(\mathrm{V})$. Pf. Extend a basis for $\mathrm{N}(\mathrm{T})$ to a basis for V by adding $\left\{v_{k+1}, \ldots, v_{n}\right\}$. Show $\left\{T\left(v_{k+1}\right), \ldots, T\left(v_{n}\right)\right\}$ is a basis for $R(T)$ by using linearity and linear independence. T is one-to-one iff $N(T)=\{0\}$. If V and W have equal finite dimension, the following are equivalent: (a) T is one-to-one. (b) T is onto. (c) $\operatorname{rank}(\mathrm{T})=\operatorname{dim}(\mathrm{V})$ (a) and (b) imply T is invertible.

	on the left: $[T(u)]_{\gamma}=[T]_{\beta}^{\gamma}[u]_{\beta}$ i.e. $L_{A} \phi_{\beta}=\phi_{\gamma} T$ where $A=[T]_{\beta}^{\gamma}$. 2. Let V, W be finite-dimensional vector spaces with bases β, γ. The function $\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\Phi(T)=[T]_{\beta}^{\gamma}$ is an isomorphism. So, for linear transformations $U, T: V \rightarrow W$, a. $[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}$ b. $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$ for all scalars a. c. $\mathcal{L}(V, W)$ has dimension $m n$. 3. For vector spaces $\mathrm{V}, \mathrm{W}, \mathrm{Z}$ with bases $\alpha, \beta, \mathrm{\gamma}$ and linear transformations $T: V \rightarrow W$, $U: W \rightarrow Z,[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$. 4. T is invertible iff $[T]_{\beta}^{\gamma}$ is invertible. Then $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.
3-3	Change of Coordinates Let β and γ be two ordered bases for finite-dimensional vector space V . The change of coordinate matrix (from β-coordinates to γ-coordinates) is $Q=\left[I_{V}\right]_{\beta}^{\gamma}$. Write vector j of β in terms of the vectors of γ, take the coefficients and load them in the j th column of Q. (This is so ($0, \ldots 1, \ldots 0$) gets transformed into the j th column.) 1. Q^{-1} changes γ-coordinates into β-coordinates. 2. $[T]_{\gamma}=Q[T]_{\beta} Q^{-1}$ Two nxn matrices are similar if there exists an invertible matrix Q such that $B=Q^{-1} A Q$. Similarity is an equivalence relation. Similar matrices are manifestations of the same linear transformation in different bases.
3-4	Dual Spaces A linear functional is a linear transformation from V to a field of scalars F. The dual space is the vector space of all linear functionals on $\mathrm{V}: V^{*}=\mathcal{L}(V, F) . \mathrm{V}^{* *}$ is the double dual. If V has ordered basis $\beta=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, then $\beta^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ (coordinate functions-the dual basis) is an ordered basis for V^{*}, and for any $f \in V^{*}$, $f=\sum_{i=1}^{n} f\left(x_{i}\right) f_{i}$ To find the coordinate representations of the vectors of the dual bases in terms of the standard coordinate functions: 1. Load the coordinate representations of the vectors in β into the columns of W. 2. The desired representation are the rows of W^{-1}. 3. The two bases are biorthogonal. For an orthonormal basis (see section 5-5), the coordinate representations of the basis and dual bases are the same. Let V , W have ordered bases β, γ. For a linear transformation $T: V \rightarrow W$, define its transpose (or dual) $T^{t}: W^{*} \rightarrow V^{*}$ by $T^{t}(\mathrm{~g})=\mathrm{g} T . \mathrm{T}^{\mathrm{t}}$ is a linear transformation satisfying $\left[T^{t}\right]_{\gamma^{*}}^{\beta^{*}}=\left([T]_{\beta}^{\gamma}\right)^{t}$. Define $\hat{x}: V^{*} \rightarrow F$ by $\hat{x}(\mathrm{f})=\mathrm{f}(x)$, and $\psi: V \rightarrow V^{* *}$ by $\psi(x)=\hat{x}$. (The input is a function; the output is a function evaluated at a fixed point.) If V is finite-dimensional, ψ is an

isomorphism. Additionally, every ordered basis for V^{*} is the dual basis for some basis for V .
The annihilator of a subset S of V is a subspace of V^{*} :

$$
S^{0}=\operatorname{Ann}(S)=\left\{f \in V^{*} \mid f(x)=0 \forall x \in S\right\}
$$

4	Systems of Linear Equations
4-1	Systems of Linear Equations The system of equations $\left\{\begin{array}{c} a_{11} x_{1}+\cdots+a_{n 1} x_{n}=b_{1} \\ \vdots \\ a_{m 1} x_{1}+\cdots a_{m n} x_{n}=b_{m} \end{array}\right.$ can be written in matrix form as $\mathrm{Ax}=\mathrm{b}$, where $A=\left[\begin{array}{ccc}a_{11} & \cdots & a_{n 1} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right]$ and $b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right]$. The augmented matrix is $[A \mid b]$ (the entries of b placed to the right of A). The system is consistent if it has solution(s). It is singular if it has zero or infinitely many solutions. If $b=0$, the system is homogeneous. 1. Row picture: Each equation gives a line/ plane/ hyperplane. They meet at the solution set. 2. Column picture: The columns of A combine (with the coefficients $x_{1}, \ldots x_{n}$) to produce b.
4-2	Elimination There are three types of elementary row/ column operations: (1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a nonzero scalar (3) Adding any multiple of a row/ column to another row/ column An elementary matrix is the matrix obtained by performing an elementary operation on I_{n}. Any two matrices related by elementary operations are (row/column-)equivalent. Performing an elementary row/ column operation is the same as multiplying by the corresponding elementary matrix on the left/ right. The inverse of an elementary matrix is an elementary matrix of the same type. When an elementary row operation is performed on an augmented matrix or the equation $A x=b$, the solution set to the corresponding system of equations does not change. Gaussian elimination- Reduce a system of equations (line up the variables, the equations are the rows), a matrix, or an augmented matrix by using elementary row operations. Forward pass 1. Start with the first row. 2. Excluding all rows before the current row (row j), in the leftmost nonzero column (column k), make the entry in the current row nonzero by switching rows as necessary. (Type 1 operation) The pivot d_{i} is the first nonzero in the current row, the row that does the elimination. [Optional: divide the current row by the pivot to make the entry 1. (2)] 3. Make all numbers below the pivot zero. To make the entry a_{ik} in the th row 0 , subtract row j times the multiplier $l_{i k}=a_{i k} / d_{i}$ from row i . This corresponds to multiplication by a type 3 elementary matrix $M_{i k}$. 4. Move on to the next row, and repeat until only zero rows remain (or rows are exhausted). Backward pass (Back-substitution) 5. Work upward, beginning with the last nonzero row, and add multiples of each row to

	the rows above to create zeros in the pivot column. When working with equations, this is essentially substituting the value of the variable into earlier equations. 6. Repeat for each preceding row except the first. A free variable is any variable corresponding to a column without a pivot. Free variables can be arbitrary, leading to infinitely many solutions. Express the solution in terms of free variables. If elimination produces a contradiction (in A\|b, a row with only the last entry a nonzero, corresponding to $0=a$), there is no solution. Gaussian elimination produces the reduced row echelon form of the matrix: (Forward/ backward pass accomplished 1, (2), 3/4.) 1. Any row containing a nonzero entry precedes any zero row. 2. The first nonzero entry in each row is 1. 3. It occurs in a column to the right of the first nonzero entry in the preceding row. 4. The first nonzero entry in each row is the only nonzero entry in its column. The reduced row echelon of a matrix is unique.
4-3	Factorization Elimination = Factorization Performing Gaussian elimination on a matrix A is equivalent to multiplying A by a sequence of elementary row matrices. If no row exchanges are made, $U=\left(\sum E_{i j}\right) A$, so A can be factored in the form $A=\left(\sum E_{i j}^{-1}\right) U=L U$ where L is a lower triangular matrix with 1's on the diagonal and U is an upper triangular matrix (note the factors are in opposite order). Note $E_{i j}$ and $E_{i j}^{-1}$ differ only in the sign of entry (i, j), and the multipliers go directly into the entries of $L . U$ can be factored into a diagonal matrix D containing the pivots and U' an upper triangular matrix with 1's on the diagonal: $A=L D U^{\prime}$ The first factorization corresponds to the forward pass, the second corresponds to completing the back substitution. If A is symmetric, $U^{\prime}=L^{T}$. Using $A=L U,(L U) x=A x=b$ can be split into two triangular systems: 1. Solve $L c=b$ for c . 2. Solve $U x=c$ for x . A permutation matrix P has the rows of I in any order; it switches rows. If row exchanges are required, doing row exchanges 1. in advance gives $P A=L U$. 2. after elimination gives $A=L_{1} P_{1} U_{1}$.
4-4	The Complete Solution to $\mathrm{Ax}=\mathrm{b}$, the Four Subspaces The rank of a matrix A is the rank of the linear transformation L_{A}, and the number of pivots after elimination.

Properties:

1. Multiplying by invertible matrices does not change the rank of a matrix, so elementary row and column matrices are rank-preserving.
2. $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$
3. $A x=b$ is consistent iff $\operatorname{rank}(A)=\operatorname{rank}(A \mid b)$.
4. Rank inequalities

Linear transformations T, U	Matrices A, B
$\operatorname{rank}(\mathrm{TU}) \leq \min (\operatorname{rank}(\mathrm{T}), \operatorname{rank}(\mathrm{U}))$	$\operatorname{rank}(\mathrm{AB}) \leq \min (\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{B}))$

Four Fundamental Subspaces of A

1. The row space $C\left(A^{\top}\right)$ is the subspace generated by rows of A, i.e. it consists of all linear combinations of rows of A.
a. Eliminate to find the nonzero rows. These rows are a basis for the row space.
2. The column space $C(A)$ is the subspace generated by columns of A.
a. Eliminate to find the pivot columns. These columns of A (the original matrix) are a basis for the column space. The free columns are combinations of earlier columns, with the entries of F the coefficients. (See below)
b. This gives a technique for extending a linearly independent set to a basis: Put the vectors in the set, then the vectors in a basis down the columns of A .
3. The nullspace $N(A)$ consists of all solutions to $A x=0$.
a. Finding the Nullspace (after elimination)
i. Repeat for each free variable x : Set $\mathrm{x}=1$ and all other free variables to 0 , and solve the resultant system. This gives a special solution for each free variable.
ii. The special solutions found in (1) generate the nullspace.
b. Alternatively, the nullspace matrix (containing the special solutions in its columns) is $N=\left[\begin{array}{c}-F \\ I\end{array}\right]$ when the row reduced echelon form is $R=\left[\begin{array}{cc}I & F \\ 0 & 0\end{array}\right]$. If columns are switched in R, corresponding rows are switched in N .
4. The left nullspace $\mathrm{N}\left(\mathrm{A}^{\top}\right)$ consists of all solutions to $A^{T} x=0$ or $x^{T} A=0$.

Fundamental Theorem of Linear Algebra (Part 1):
Dimensions of the Four Subspaces: A is mxn, rank(A)=r (If the field is complex, replace A^{T} by A^{*}.)

	 The relationships between the dimensions can be shown using pivots or the dimension theorem. The Complete Solution to $A x=b$ 1. Find the nullspace N, i.e. solve $A x=0$. 2. Find any particular solution x_{p} to $A x=b$ (there may be no solution). Set free variables to 0 . 3. The solution set is $N+x_{p}$; i.e. all solutions are in the form $x_{n}+x_{p}$, where x_{n} is in the nullspace and x_{p} is a particular solution.
4-5	Inverse Matrices A is invertible iff it is square ($n \times n$) and any one of the following is true: 1. A has rank n , i.e. A has n pivots. 2. $A x=b$ has exactly 1 solution. 3. Its columns/ rows are a basis for F^{n}. Gauss-Jordan Elimination: If A is an invertible $n x n$ matrix, it is possible to transform ($\mathrm{A} \mid \mathrm{I}_{\mathrm{n}}$) into $\left(\ln \mid A^{-1}\right)$ by elementary row operations. Follow the same steps as in Gaussian elimination, but on $\left(A \mid I_{n}\right)$. If A is not invertible, then such transformation leads to a row whose first n entries are zeros.

5	Inner Product Spaces																						
5-1	Inner Products An inner product on a vector space V over $\mathrm{F}(\mathbb{R}$ or $\mathbb{C})$ is a function that assigns each ordered pair $(x, y) \in V$ a scalar $\langle x, y\rangle$, such that for all $x, y, z \in V$ and $c \in F$, 1. $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$ 2. $\langle c x, y\rangle=c\langle x, y\rangle$ (The inner product is linear in its first component.) 3. $\overline{\langle x, y\rangle}=\langle y, x\rangle$ (Hermitian) 4. $\langle x, x\rangle>0$ for $x>0$. (Positive) V is called an inner product space, also an Euclidean/ unitary space if F is \mathbb{R} / \mathbb{C}. The inner product is conjugate linear in the second component: 1. $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ 2. $\langle c x, y\rangle=\bar{c}\langle x, y\rangle$ If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$ then $y=z$. The standard inner product (dot product) of $x=\left(a_{1}, \ldots, a_{n}\right)$ and $y=\left(b_{1}, \ldots, b_{n}\right)$ is $x \cdot y=\langle x, y\rangle=\sum_{i=1}^{n} a_{i} \bar{b}_{i}$ The standard inner product for the space of continuous complex functions H on $[0,2 \pi]$ is $\langle f, g\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \overline{g(t)} d t$ A norm of a vector space is a real-valued function $\\|\cdot\\|$ satisfying 1. $\\|c x\\|=c\\|x\\|, c \geq 0$ 2. $\\|x\\| \geq 0$, equality iff $x=0$. 3. Triangle Inequality: $\\|x+y\\| \leq\\|x\\|+\\|y\\|$ The distance between two vectors x, y is $\\|x-y\\|$. In an inner product space, the norm (length) of a vector is $\\|x\\|=\sqrt{\langle x, x\rangle}$. Cauchy-Schwarz Inequality: $\|\langle x, y\rangle\| \leq\\|x\\|\\|y\\|$																						
5-2	Orthogonality Two vectors are orthogonal (perpendicular) when their inner product is 0 . A subset S is orthogonal if any two distinct vectors in S are orthogonal, orthonormal if additionally all vectors have length 1 . Subspaces V and W are orthogonal if each $v \in V$ is orthogonal to each $w \in W$. The orthogonal complement $V^{\perp}(\mathrm{V}$ perp) of V is the subspace containing all vectors orthogonal to V . (Warning: $V^{\perp \perp}=V$ holds when V is finite-dimensional, not necessarily when V is infinite-dimensional.) When an orthonormal basis is chosen, every inner product on finite-dimensional V is similar to the standard inner product. The conditions effectively determine what the inner product has to be. Pythagorean Theorem: If x and y are orthogonal, $\\|x+y\\|^{2}=\\|x\\|^{2}+\\|y\\|^{2}$. Fundamental Theorem of Linear Algebra (Part 2): The nullspace is the orthogonal complement of the row space. The left nullspace is the orthogonal complement of the column space.																						

5-3	Projections Take 1: Matrix and geometric viewpoint The [orthogonal] projection of b onto a is $p=\frac{\langle b, a\rangle}{\\|a\\|^{2}} a=\frac{b \cdot a}{a \cdot a} a=\underbrace{}_{\underbrace{\frac{a^{*} b}{a^{*} a}}_{\hat{x}} a} a$ The last two expressions are for (row) vectors in \mathbb{C}^{n}, using the dot product. (Note: this shows that $a \cdot b=\\|a\\|\\|b\\| \cos \theta$ for 2 and 3 dimensions.) Let S be a finite orthogonal basis. A vector y is the sum of its projections onto the vectors of S: $y=\sum_{v \in S} \frac{\langle y, v\rangle}{\\|v\\|^{2}} v$ Pf. Write y as a linear combination and take the inner product of y with a vector in the basis; use orthogonality to cancel all but one term. As a corollary, any orthogonal subset is linearly independent. To find the projection of b onto a finite-dimensional subspace W , first find an orthonormal basis for W (see section 5-5), β. The projection is $p=\sum_{v \in \beta}\langle b, v\rangle v$ and the error is $e=b-p . b$ is perpendicular to e, and p is the vector in W so that $\\|b-p\\|$ is minimal. (Proof uses Pythagorean theorem) Bessel's Inequality: (β a basis for a subspace) $\sum_{v \in \beta} \frac{\langle y, v\rangle^{2}}{\\|v\\|^{2}} \leq\\|y\\|^{2}$, equality iff $y=\sum_{v \in \beta} \frac{\langle y, v\rangle}{\\|v\\|^{2}} v$ If $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis, then for any linear transformation $\mathrm{T},\left([T]_{\beta}\right)_{i j}=$ $\left\langle T\left(v_{j}\right), v_{i}\right\rangle$. Alternatively: Let W be a subspace of \mathbb{C}^{m} generated by the linearly independent set $\left\{a_{1}, \ldots a_{n}\right\}$. Solving $A^{*}(b-A \hat{x})=0 \Rightarrow A^{*} A \hat{x}=A^{*} b$, the projection of a onto W is $p=A \hat{x}=\underbrace{A\left(A^{*} A\right)^{-1} A^{*}}_{P} b$ where P is the projection matrix. In the special case that the set is orthonormal, $Q x \approx b \Rightarrow$ $\hat{x}=Q^{T} b, p=\underbrace{Q Q^{T}}_{P} b$ A matrix P is a projection matrix iff $P^{2}=P$. Take 2: Linear transformation viewpoint If $V=W_{1} \oplus W_{2}$ then the projection on W_{1} along W_{2} is defined by $T(x)=x_{1} \text { when } x=x_{1}+x_{2} ; x_{1} \in W_{1}, x_{2} \in W_{2}$ T is an orthogonal projection if $R(T)^{\perp}=N(T)$ and $N(T)^{\perp}=R(T)$. A linear operator T is an orthogonal projection iff $T^{2}=T=T^{*}$.
5-4	Minimal Solutions and Least Squares Approximations When $A x=b$ is consistent, the minimal solution is the one with least absolute value.

1. There exists exactly one minimal solution s , and $s \in C\left(A^{*}\right)$.
2. s is the only solution to $A x=b$ in $C\left(A^{*}\right):\left(A A^{*}\right) u=b \Rightarrow s=A^{*} u=A^{*}\left(A A^{*}\right)^{-1} b$.

The least squares solution \hat{x} makes $E=\|A x-b\|^{2}$ as small as possible. (Generally, $A x=b$ is inconsistent.) Project b onto the column space of A .

To find the real function in the form $y(t)=\sum_{i=1}^{m} C_{i} f_{i}(t)$ for fixed functions f_{i} that is closest to the points $\left(t_{1}, y_{1}\right), \ldots\left(t_{n}, y_{n}\right)$, i.e. such that the error $e=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-y\left(t_{i}\right)\right)^{2}$ is least, let A be the matrix with $A_{i j}=f_{i}\left(t_{j}\right), b=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$. Then $A x=b$ is equivalent to the system $y\left(t_{i}\right)=y_{i}$. Now find the projection of b onto the columns of A, by multiplying by A^{T} and solving $A^{T} A \hat{x}=A^{T} b$. Here, p is the values estimated by the best-fit curve and e gives the errors in the estimates.
$E x$. Linear functions $y=C+D t$:
$A=\left[\begin{array}{cc}1 & t_{1} \\ \vdots & \vdots \\ 1 & t_{n}\end{array}\right]$.The equation $A^{T} A \hat{x}=A^{T} b$ becomes $\left[\begin{array}{cc}n & \sum t_{i} \\ \sum t_{i} & \sum t_{i}^{2}\end{array}\right]\left[\begin{array}{c}C \\ D\end{array}\right]=\left[\begin{array}{c}\sum y_{i} \\ \sum t_{i} y_{i}\end{array}\right]$.
A has orthogonal columns when $\sum t_{i}=0$. To produce orthogonal columns, shift the times by letting $T_{i}=t_{i}-\hat{t}=t_{i}-\frac{t_{1}+\cdots+t_{n}}{n}$. Then $A^{T} A$ is diagonal and $C=\frac{\sum y_{i}}{n}, D=\frac{\sum y_{i} t_{i}}{\sum t_{i}^{2}}$. The least squares line is $y=C+D(t-\hat{t})$.

Row space $C\left(A^{T}\right)$

- $\left\{A^{T} y\right\}$
- Dimension r

Nullspace $N(A)$

- $\{x \mid A x=0\}$
- Dimension n-r

Column space $C(A)$

- $\{A x\}$
- Dimension r

Left nullspace $N\left(A^{T}\right)$

- $\left\{y \mid A^{T} y=0\right\}$
- Dimension m-r

Orthogonal Bases

Gram-Schmidt Orthogonalization Process:

Let $S=\left\{v_{1}, \ldots v_{n}\right\}$ be a linearly independent subset of V . Define $S^{\prime}=\left\{w_{1}, \ldots w_{n}\right\}$ by $v_{1}=w_{1}$ and

$$
v_{k}=w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle y, v_{j}\right\rangle}{\left\|v_{j}^{2}\right\|} v_{j}
$$

Then S' is an orthogonal set having the same span as S. To make S' orthonormal, divide every vector by its length. (It may be easier to subtract the projections of w_{l} on w_{k} for all $l>k$ at step k, like in elimination.)

Ex. Legendre polynomials $\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} x, \sqrt{\frac{5}{8}}\left(3 x^{2}-1\right), \ldots$ are an orthonormal basis for $\mathbb{R}[x]$ (integration from -1 to 1).

Factorization $\mathrm{A}=\mathrm{QR}$
From $a_{1}, \ldots a_{n}$, Gram-Schmidt constructs orthonormal vectors $q_{1}, \ldots q_{n}$. Then

\[

\]

Note R is upper triangular.
Suppose $S=\left\{v_{1}, \ldots v_{k}\right\}$ is an orthonormal set in n-dimensional inner product space V . Then
(a) S can be extended to an orthonormal basis $\left\{v_{1}, \ldots v_{n}\right\}$ for V .
(b) If $\mathrm{W}=\operatorname{span}(\mathrm{S}), S_{1}=\left\{v_{k+1}, \ldots v_{n}\right\}$ is an orthonormal basis for W^{\perp}.
(c) Hence, $V=W \oplus W^{\perp}$ and $\operatorname{dim}(V)=\operatorname{dim}(W)+\operatorname{dim}\left(W^{\perp}\right)$.

5-6 Adjoints and Orthogonal Matrices

Let V be a finite-dimensional inner product space over F , and let $\mathrm{g}: V \rightarrow F$ be a linear transformation. The unique vector $y \in V$ such that $\mathrm{g}(x, y)=\langle x, y\rangle$ for all $x \in V$ is given by

$$
y=\sum_{i=1}^{n} \overline{\mathrm{~g}\left(v_{i}\right)} v_{i}
$$

Let $T: V \rightarrow W$ be a linear transformation, and β and γ be bases for inner product spaces \vee, W. Define the adjoint of T to be the linear transformation $T^{*}: W \rightarrow V$ such that $\left[T^{*}\right]_{\gamma}^{\beta}=$ $\left([T]_{\beta}^{\gamma}\right)^{*}$. (See section 2.3) Then T^{*} is the unique (linear) function such that $\langle T(x), y\rangle_{W}=$ $\left\langle x, T^{*}(y)\right\rangle_{V}$ for all $x \in V, y \in W$ and $c \in F$.

A linear operator T on V is an isometry if $\|T(x)\|=\|x\|$ for all $x \in V$. If V is finitedimensional, T is orthogonal for V real and unitary for V complex. The corresponding matrix representations, as well as properties of T , are described below.

	Commutative property	Inverse property	Symmetry property								
Real	Normal	Orthogonal	Symmetric								
	$A A^{T}=A^{T} A$	$A^{T} A=I$	$A^{T}=A$								
Complex	Normal	Unitary	Self-adjoint/ Hermitian								
	$A A^{*}=A^{*} A$	$A^{*} A=I$	$A^{*}=A$								
Linear	$\langle T v, T w\rangle=\left\langle T^{*} v, T^{*} w\right\rangle$	$\langle T v, T w\rangle=\langle v, w\rangle$	$\langle T v, w\rangle=\langle v, T w\rangle$								
Transformation	$\\|T v\\|=\left\\|T^{*} x\right\\|$	$\\|T v\\|=\\|v\\|$									
		$(U x)^{T}(U y)=x^{T} y$									

6	Determinants
6-1	Characterization The determinant (denoted $\|A\|$ or deti($A(A)$) is a function from the set of square matrices to the field F , satisfying the following conditions: 1. The determinant of the $n \times n$ identity matrix is 1 , i.e. $\operatorname{det}(I)=1$. 2. If two rows of A are equal, then $\operatorname{det}(A)=0$, i.e. the determinant is alternating. 3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, if $a_{1}, \ldots a_{n}, u, v$ are rows with n elements, $\operatorname{det}\left(\begin{array}{c} a_{1} \\ \vdots \\ a_{r-1} \\ u+k v \\ a_{r+1} \\ \vdots \\ a_{n} \end{array}\right)=\operatorname{det}\left(\begin{array}{c} a_{1} \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_{n} \end{array}\right)+k \operatorname{det}\left(\begin{array}{c} a_{1} \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_{n} \end{array}\right)$ These properties completely characterize the determinant. 4. The determinant changes sign when two rows are exchanged. 5. Adding a multiple of one row to another row leaves $\operatorname{det}(A)$ unchanged. 6. A matrix with a row of zeros has $\operatorname{det}(A)=0$. 7. If A is triangular then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$ is the product of diagonal entries. 8. A is $\operatorname{singular~iff~} \operatorname{det}(A)=0$. 9. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ 10. A^{T} has the same determinant as A . Therefore the preceding properties are true if "row" is replaced by "column".
6-2	Calculation 1. The Big Formula: Use n-linearity and expand everything. $\operatorname{det}(A)=\sum_{\sigma \in \Theta_{n}} \operatorname{sgn}(\sigma) A_{1, \sigma(1)} A_{2, \sigma(2)} \cdots A_{n, \sigma(n)}$ where the sum is over all n ! permutations of $\{1, \ldots n\}$ and $\operatorname{sgn}(\sigma)=\left\{\begin{array}{l}1, \text { if } \sigma \text { is even } \\ -1, \text { if } \sigma \text { is odd }\end{array}\right.$. 2. Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction. (Row) $\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}=\sum_{j=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ (Column) $\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j}=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$ where $M_{i j}$ is A with the th row and j th column removed. 3. Pivots: If the pivots are $d_{1}, d_{2}, \ldots d_{n}$, and $P A=L U$, (P a permutation matrix, L is lower triangular, U is upper triangular) $\operatorname{det}(A)=\operatorname{det}(P)\left(d_{1} d_{2} \cdots d_{n}\right)$ where $\operatorname{det}(\mathrm{P})=1 /-1$ if P corresponds to an even/ odd permutation. a. Let A_{k} denote the matrix consisting of the first k rows and columns of A . If

	there are no row exchanges in elimination, $d_{k}=\frac{\operatorname{det}\left(A_{k}\right)}{\operatorname{det}\left(A_{k-1}\right)}$ 4. By Blocks: a. $\left\|\begin{array}{ll}A & B \\ O & C\end{array}\right\|=\|\mathrm{A}\|\|C\|$ b. $\left\|\begin{array}{ll}A & B \\ C & D\end{array}\right\|=\left\|\begin{array}{cc}A & B \\ O & D-C A^{-1} B\end{array}\right\|=\|A\|\left\|D-C A^{-1} B\right\|$ Tips and Tricks Vandermonde determinant (look at when the determinant is 0 , gives factors of polynomial) $\left\|\begin{array}{cccc} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{array}\right\|=\prod_{i>j}\left(x_{i}-x_{j}\right)$ Circulant Matrix (find eigenvectors, determinant is product of eigenvalues) $\begin{aligned} \left\|\begin{array}{cccc} a_{1} & x & \cdots & x \\ x & a_{2} & \cdots & x \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \cdots & a_{n} \end{array}\right\| & =\left(\left.\begin{array}{cccc} a_{0} & a_{1} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & \cdots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1} & a_{2} & \cdots & a_{0} \end{array} \right\rvert\,=\prod_{j=0}^{n-1} \sum_{k=0}^{n-1}\left(e^{\frac{2 \pi i}{n}}\right)^{j k} a_{k}\right. \\ & =x\left(a_{1}-x\right) \cdots\left(a_{n}-x\right)+x \sum_{i=1}^{n} \prod_{j \neq i}\left(a_{j}-x\right)\left(\frac{1}{x}+\frac{1}{a_{1}-x}+\cdots+\frac{1}{a_{n}-x}\right) \end{aligned}$ For a real matrix A, $\operatorname{det}\left(I+A^{2}\right)=\\|\operatorname{det}(I+i A)\\|^{2} \geq 0$ If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then $\operatorname{det}(A+\lambda I)=\left(\lambda_{1}+\lambda\right) \cdots\left(\lambda_{n}+\lambda\right)$ In particular, if M has rank 1 , $\operatorname{det}(I+M)=1+\operatorname{tr}(M)$
6-3	Properties and Applications Cramer's Rule: If A is a nxn matrix and $\operatorname{det}(A) \neq 0$ then $A x=b$ has the unique solution given by $x_{i}=\frac{\operatorname{det}\left(B_{i}\right)}{\operatorname{det}(A)}, 1 \leq i \leq n$ Where B_{i} is A with the th column replaced by b . Inverses: Let C be the cofactor matrix of A . Then $A^{-1}=\frac{C^{T}}{\operatorname{det}(A)}$ The cross product of $u=\left(u_{1}, u_{2}, u_{3}\right)$ and $v=\left(v_{1}, v_{2}, v_{3}\right)$ is $u \times v=\left\|\begin{array}{ccc} i & j & k \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{array}\right\|$ a vector perpendicular to u and v (direction determined by the right-hand rule) with length

7	Eigenvalues and Eigenvectors, Diagonalization
7-1	Eigenvalues and Eigenvectors Let T be a linear operator (or matrix) on V . A nonzero vector $v \in V$ is an (right) eigenvector of T if there exists a scalar λ, called the eigenvalue, such that $T(v)=\lambda v$. The eigenspace of λ is the set of all eigenvectors corresponding to λ : $E_{\lambda}=\{x \in V \mid T(x)=\lambda x\}$. The characteristic polynomial of a matrix A is $\operatorname{det}(A-\lambda I)$. The zeros of the polynomial are the eigenvalues of A . For each eigenvalue solve $A v=\lambda v$ to find linearly independent eigenvalues that span the eigenspace. Multiplicity of an eigenvalue λ : 1. Algebraic $\left(\mu_{\text {alg }}\right)$-the multiplicity of the root λ in the characteristic polynomial of A . 2. Geometric $\left(\mu_{\text {geom }}\right)$-the dimension of the eigenspace of $\lambda .1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq \mu_{\text {alg }}(\lambda)$. $\operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}(N(A-\lambda I))=n-\operatorname{rank}(A-\lambda I)$. For real matrices, complex eigenvalues come in conjugate pairs. The product of the eigenvalues (counted by algebraic multiplicity) equals detif(A). The sum of the eigenvalues equals the trace of A. An eigenvalue of 0 implies that A is singular. Spectral Mapping Theorem: Let A be a nxn matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (not necessarily distinct, counted according to algebraic multiplicity), and P be a polynomial. Then the eigenvalues of $P(A)$ are $P\left(\lambda_{1}\right), \ldots, P\left(\lambda_{n}\right)$. Gerschgorin's Disk Theorem: Every eigenvalue of A is strictly in a circle in the complex plane centered at some diagonal entry $A_{i i}$ with radius $r_{i}=\sum_{j \neq i}\left\|a_{i j}\right\|$ (because $\left(\lambda-A_{i i}\right) x_{i}=\sum_{j \neq i} a_{i j} x_{j}$). Perron-Frobenius Theorem: Any square matrix with positive entries has a unique eigenvector with positive entries (up to multiplication by a positive factor), and the corresponding eigenvalue has multiplicity one and has strictly greater absolute value than any other eigenvalue. Generalization: Holds for any irreducible matrix with nonnegative entries, i.e. there is no reordering of rows and columns that makes it block upper triangular. A left eigenvalue of A satisfies $v^{T} A=\lambda v$ instead. Biorthogonality says that any right eigenvector of A associated with λ is orthogonal to all left eigenvectors of A associated with eigenvalues other than λ.
7-2	Invariant and T-Cyclic Subspaces The subspace $C_{x}=Z(x ; T)=W=\operatorname{span}\left(\left\{x . T(x), T^{2}(x), \ldots\right\}\right)$ is the \mathbf{T}-cyclic subspace generated by x . W is the smallest T-invariant subspace containing x . 1. If W is a T-invariant subspace, the characteristic polynomial of T_{W} divides that of T. 2. If $\mathrm{k}=\operatorname{dim}(\mathrm{W})$ then $\beta_{x}=\left\{x, T(x), \ldots, T^{k-1}(x)\right\}$ is a basis for W , called the T -cyclic basis

	generated by x. If $\sum_{i=0}^{k} a_{i} T^{i}(x)=0$ with $a_{k}=1$, the characteristic polynomial of T_{w} is $(-1)^{k} \sum_{i=0}^{k} a_{i} t^{i}$. 3. If $V=W_{1} \oplus W_{2} \cdots W_{k}$, each W_{i} is a T-invariant subspace, and the characteristic polynomial of $T_{W_{i}}$ is $f_{i}(t)$, then the characteristic polynomial of T is $\prod_{i=1}^{k} f_{i}(t)$. Cayley-Hamilton Theorem: A satisfies its own characteristic equation: if $f(t)$ is the characteristic polynomial of A , then $f(A)=0$.
7-3	Triangulation A matrix is triangulable if it is similar to an upper triangular matrix. (Schur) A matrix is triangulable iff the characteristic polynomial splits over F. A real/ complex matrix A is unitarily/ orthogonally equivalent to a real/ complex upper triangular matrix. (i.e. $A=Q T Q^{-1}, \mathrm{Q}$ is orthogonal/ unitary) $\underline{P f}$. $\mathrm{T}=\mathrm{L}_{\mathrm{A}}$ has an eigenvalue iff T^{*} has. Induct on dimension n . Choose an eigenvector z of T^{*}, and apply the induction hypothesis to the T -invariant subspace $\operatorname{span}(z)^{\perp}$.
7-4	Diagonalization T is diagonalizable if there exists an ordered basis β for V such that $[T]_{\beta}$ is diagonal. A is diagonalizable if there exists an invertible matrix S such that $S^{-1} A S=\Lambda$ is a diagonal matrix. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of A. Let S_{i} be a linearly independent subset of $E_{\lambda_{i}}$ for $1 \leq i \leq k$. Then $\cup S_{i}$ is linearly independent. (Loosely, eigenvectors corresponding to different eigenvalues are linearly independent.) T is diagonalizable iff both of the following are true: 1. The characteristic polynomial of T splits (into linear factors). 2. For each eigenvalue, the algebraic and geometric multiplicities are equal. Hence there are n linearly independent eigenvectors T is diagonalizable iff V is the direct sum of eigenspaces of T . To diagonalize A, put the n linearly independent eigenvectors into the columns of A. Put the corresponding eigenvalues into the diagonal entries of Λ. Then $A=S \Lambda S^{-1} \text { or } Q D Q^{-1}$ For a linear transformation, this corresponds to $[T]_{\beta}=[I]_{\gamma}^{\beta}[T]_{\gamma}[I]_{\beta}^{\gamma}$ Simultaneous Triangulation and Diagonalization Commuting matrices share eigenvectors, i.e. given that A and B can be diagonalized, there exists a matrix S that is an eigenvector matrix for both of them iff $A B=B A$. Regardless, AB and BA have the same set of eigenvalues, with the same multiplicities. More generally, let \mathfrak{F} be a commuting family of triangulable/ diagonalizable linear operators on V . There exists an ordered basis for V such that every operator in \mathfrak{F} is simultaneously represented by a triangular/ diagonal matrix in that basis.
7-5	Normal Matrices (For review see 5-6)

A nxn [real] symmetric matrix:

1. Has only real eigenvalues.
2. Has eigenvalues that can be chosen to be orthonormal. $\left(S=Q, Q^{-1}=Q^{T}\right)$ (See below.)
3. Has n linearly independent eigenvectors so can be diagonalized.
4. The number of positive/ negative eigenvalues equals the number of positive/ negative pivots.

For real/ complex finite-dimensional inner product spaces, T is symmetric/ normal iff there exists an orthonormal basis for V consisting of eigenvectors of T .

Spectral Theorem (Linear Transformations)

Suppose T is a normal linear operator $\left(T^{*} T=T T^{*}\right)$ on a finite-dimensional real/ complex inner product space \vee with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ (its spectrum). Let W_{i} be the eigenspace of T corresponding to λ_{i} and T_{i} the orthogonal projection of V on W_{i}.

1. T is diagonalizable and $V=W_{1} \oplus \cdots \oplus W_{n}$.
2. W_{i} is orthogonal to the direct sum of W_{j} with $j \neq i$.
3. There is an orthonormal basis of eigenvectors.
4. Resolution of the identity operator: $I=T_{1}+\cdots+T_{n}$
5. Spectral decomposition: $T=\lambda_{1} T_{1}+\cdots+\lambda_{k} T_{n}$

Pf. The triangular matrix in the proof of Schur's Theorem is actually diagonal.

1. If $A x=\lambda x$ then $A^{*} x=\bar{\lambda} x$.
2. W is T-invariant iff W^{\perp} is T^{*}-invariant.
3. Take a eigenvector v ; let $W=\operatorname{span}(v)$. From (1) v is an eigenvector of T^{*}; from (2) W^{\perp} is T-invariant.
4. Write $V=W \oplus W^{\perp}$. Use induction hypothesis on W^{\perp}.
(Matrices)
Let A be a normal matrix ($A^{*} A=A A^{*}$). Then A is diagonalizable with an orthonormal basis of eigenvectors:

$$
A=U \Lambda U^{*}
$$

where Λ is diagonal and U in unitary.

Type of Matrix	Condition	Factorization
Hermitian (Self-adjoint)	$A^{*}=A$	$A=U \Lambda U^{-1}$ U unitary, Λ real diagonal $R e a l ~ e i g e n v a l u e s ~(b e c a u s e ~$ $\left.\lambda v^{*} v=v^{*} A v=\bar{\lambda} v^{*} v\right)$
Unitary	$A^{*} A=I$	$A=U \Lambda U^{-1}$ U unitary, Λ diagonal Eigenvalues have absolute value 1
Symmetric (real)	$A^{T}=A$	$A=Q \Lambda Q^{-1}$ Q orthogonal, Λ real diagonal Real eigenvalues
Orthogonal (real)	$A=Q \Lambda Q^{-1}$ Q unitary, Λ diagonal Eigenvalues have absolute value 1	

7-6	Positive Definite Matrices and Operators A real matrix A is positive (semi)definite if $x^{*} A x>0\left(x^{*} A x \geq 0\right)$ for every nonzero vector x . A linear operator T on a finite-dimensional inner product space is positive (semi)definite if T is self-adjoint and $\langle T(x), x\rangle>0(\langle T(x), x\rangle \geq 0)$ for all $x \neq 0$. The following are equivalent: 1. A is positive definite. 2. All eigenvalues are positive. 3. All upper left determinants are positive. 4. All pivots are positive. Every positive definite matrix factors into $A=L D U^{\prime}=L D L^{T}$ with positive pivots in D . The Cholesky factorization is $A=(L \sqrt{D})(L \sqrt{D})^{T}$
7-7	Singular Value Decomposition Every $m \times n$ matrix A has a singular value decomposition in the form $A V=U \Sigma \Rightarrow A=U \Sigma V^{-1}=U \Sigma V^{*}$ where U and V are unitary matrices and $\Sigma=\left[\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n}\end{array}\right]$ is diagonal. The singular values $\sigma_{1}, \ldots \sigma_{r}\left(\sigma_{k}=0\right.$ for $\left.k>r=\operatorname{rank}(A)\right)$ are positive and are in decreasing order, with zeros at the end (not considered singular values). If A corresponds to the linear transformation $T: V \rightarrow W$, then this says there are orthonormal bases $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma=\left\{u_{1}, \ldots, u_{m}\right\}$ such that $T\left(v_{i}\right)=\left\{\begin{array}{c} \sigma_{i} u_{i} \text { if } 1 \leq i \leq r \\ 0 \text { if } i>r \end{array}\right.$ Letting $\beta^{\prime}, \gamma^{\prime}$ be the standard ordered bases for V, W, $A V=U \Sigma \Leftrightarrow[T]_{\beta}^{\gamma^{\prime}} \cdot[I]_{\beta}^{\beta^{\prime}}=[I]_{\gamma}^{\gamma^{\prime}}[T]_{\beta}^{\gamma}$ Orthogonal elements in the basis are sent to orthogonal elements; the singular values give the factors the lengths are multiplied by. To find the SVD: 1. Diagonalize $A^{*} A$, choosing orthonormal eigenvectors. The eigenvalues are the squares of the singular values and the eigenvector matrix is V . $A^{*} A=V \Sigma^{2} V^{*}=V\left[\begin{array}{lll} \sigma_{1}^{2} & & \\ & \ddots & \\ & & \sigma_{n}^{2} \end{array}\right] V^{*}$ 2. Similarly, $A A^{*}=U \Sigma^{2} U^{*}$ If V and the singular values have already been found, the columns of U are just the images of v_{1}, \ldots, v_{n} under left multiplication by A: $u_{i}=A v_{i}$, unless this gives 0 . 3. If A is a mxn matrix: a. The first r columns of V generate the row space of A. b. The last $n-r$ columns generate the nullspace of A. c. The first r columns of U generate the column space of A. d. The last m - r columns of U generate the left nullspace of A.

8	Canonical Forms A canonical form is a standard way of presenting and grouping linear transformations or matrices. Matrices sharing the same canonical form are similar; each canonical form determines an equivalence class. Similar matrices share... - Eigenvalues - Trace and determinant - Rank - Number of independent eigenvectors - Jordan/ Rational canonical form
8-1	Decomposition Theorems A minimal polynomial of T is the (unique) monic polynomial $p(t)$ of least positive degree such that $p(T)=T_{0}$. If $g(T)=T_{0}$ then $p(t) \mid g(t)$; in particular, $p(t)$ divides the characteristic polynomial of T . Let W be an invariant subspace for T and let $x \in V$. The T -conductor ("T-stuffer") of x into W is the set $S_{T}(x ; W)$ which consists of all polynomials g over F such that $(g(T))(x) \in W$. (It may also refer to the monic polynomial of least degree satisfying the condition.) If $W=\{0\}$, \mathbf{T} is called the \mathbf{T}-annihilator of x , i.e. it is the (unique) monic polynomial $p(t)$ of least degree for which $p(T)(x)=0$. The T-conductor/ annihilator divides any other polynomial with the same property. The T -annihilator $p(t)$ is the minimal polynomial of T_{W}, where W is the T -cyclic subspace generated by x . The characteristic polynomial and minimal polynomial of T_{w} are equal or negatives. Let L be a linear operator on V , and W a subspace of V . W is T -admissible if 1. W is invariant under T . 2. If $f(T) x \in W$, there exists $y \in W$ such that $f(T)(x)=f(T)(y)$. Let T be a linear operator on finite-dimensional V. Primary Decomposition Theorem (leads to Jordan form): Suppose the minimal polynomial of T is $p(t)=\prod_{i=1}^{k} p_{i}^{r_{i}}$ where p_{i} are distinct irreducible monic polynomials and r_{i} are positive integers. Let W_{i} be the null space of $p_{i}(T)^{r_{i}}$. Then 1. $V=W_{1} \oplus \cdots \oplus W_{k}$. 2. Each W_{i} is invariant under T . 3. The minimal polynomial of $T_{W_{i}}$ is $p_{i}^{r_{i}}$. Pf. Let $f_{i}=\frac{p}{p_{i}^{r_{i}}}$. Find g_{i} so that $\sum_{i=1}^{n} f_{i} g_{i}=1 . E_{i}=f_{i}(T) g_{i}(T)$ is the projection onto W_{i}. Cyclic Decomposition Theorem (leads to rational canonical form): Let T be a linear operator on finite-dimensional V and W_{0} (often taken to be $\{0\}$) a proper Tadmissible subspace of V . There exist nonzero $x_{1}, \ldots x_{r}$ with (unique) T -annihilators p_{1}, \ldots, p_{r}, called invariant factors such that

	union of cycles of generalized eigenvectors $\gamma_{1}, \ldots, \gamma_{n_{i}}$ with lengths $p_{1} \geq \cdots \geq p_{n_{i}}$. The dot diagram for T_{i} contains one dot for each vector in β_{i}, and 1. has n_{i} columns, one for each cycle. 2. The jth column consists of p_{j} dots that correspond to the vectors of γ_{j}, starting with the initial vector. The dot diagram of T_{i} is unique: The number of dots in the first r rows equals nullity ($(T-$ $\lambda i I r)$, or if $r j$ is the number of dots in the jth row, $r j=\operatorname{rank} T-\lambda i I j-1-\operatorname{rank}(T-\lambda i I j)$. In particular, the number of cycles is the geometric multiplicity of λ_{i}. The Jordan canonical form is determined by the eigenvalues and nullity $\left(\left(\mathrm{T}-\lambda_{\mathrm{i}} \mathrm{I}\right)^{\mathrm{r}}\right)$ for every eigenvalue λ_{i}. So now we know... Supposing $p(t)$ splits, let $\lambda_{1}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T , and let p_{i} be the order of the largest Jordan block corresponding to λ_{i}. The minimal polynomial of T is T is diagonalizable iff all exponents are 1. $p(t)=\prod_{i=1}^{k}\left(t-\lambda_{i}\right)^{p_{i}}$
8-3	Rational Canonical Form Let T be a linear operator on finite-dimensional V with characteristic polynomial $f(t)=(-1)^{n} \prod_{i=1}^{k}\left(p_{i}(t)\right)^{n_{i}}$ where the factors $p_{i}(t)$ are distinct irreducible monic polynomials and n_{i} are positive integers. Define $K_{p_{i}}=\left\{x \in V \mid p_{i}(T)^{k}(x)=0 \text { for some positive integer } k\right\}$ Note this is a generalization of the generalized eigenspace. The companion matrix of the monic polynomial $p(t)=a_{0}+a_{1} t+\cdots+a_{k-1} t^{k-1}+t^{k}$ is $C(p)=\left[\begin{array}{ccccc} 0 & 0 & \cdots & 0 & -a_{0} \\ 1 & 0 & \cdots & 0 & -a_{1} \\ 0 & 1 & \cdots & 0 & -a_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{array}\right] \text { because the characteristic polynomial of } \mathrm{c}(\mathrm{p}) \text { is }(-1)^{k} p(t)$ Every linear operator T on finite-dimensional V has a rational canonical form (Frobenius normal form) even if the characteristic polynomial does not split. $[T]_{\beta}=\left[\begin{array}{cccc} C_{1} & O & \cdots & 0 \\ O & C_{2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & C_{r} \end{array}\right]$ where each C_{i} is the companion matrix of an invariant factor p_{i}. Uniqueness and Structure: The rational canonical form is unique under the condition $p_{i+1} \mid p_{i}$ for each $1 \leq i<r$. The rational canonical form is determined by the prime factorization of $f(t)$ and nullity $\left(\mathrm{p}_{\mathrm{i}}(\mathrm{T})^{\mathrm{r}}\right)$ for every positive integer r.

	Generalized Cayley-Hamilton Theorem: Suppose the characteristic polynomial of T is $f(t)=\prod_{i=1}^{k} p_{i}{ }^{r_{i}}$ where p_{i} are distinct irreducible monic polynomials and r_{i} are positive integers. Then the minimal polynomial of T is $p(t)=\prod_{i=1}^{k} p_{i}{ }^{d_{i}}$ where $d_{i}=\frac{\text { nullity }\left(p_{i}(T)^{r} i\right)}{\operatorname{deg}\left(p_{i}\right)}$.
8-4	Calculation of Invariant Factors For a matrix over the polynomials $\mathrm{F}[\mathrm{x}]$, elementary row/ column operations include: (1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a nonzero scalar (3) Adding any polynomia/ multiple of a row/ column to another row/ column However, note arbitrary division by polynomials is illegal in $\mathrm{F}[\mathrm{x}]$. For such a (mxn) polynomial $\mathrm{F}[\mathrm{x}]$, the following are equivalent: 1. P is invertible. 2. The determinant of P is a nonzero scalar. 3. P is row-equivalent to the $m \times m$ identity matrix. 4. P is a product of elementary matrices. A $m \times n$ matrix is in Smith normal form if 1. Every entry not on the diagonal is 0 . 2. On the main diagonal of N , there appear polynomials $f_{1}, \ldots f_{l}$ such that $f_{k} \mid f_{k+1}, 1 \leq$ $k<\min (n, n)$. Every matrix is equivalent to a unique matrix N in normal form. For a $m \times n$ matrix A , follow this algorithm to find it: 1. Make the first column $\left[\begin{array}{c}p \\ 0 \\ \vdots \\ 0\end{array}\right]$. a. Choose the nonzero entry f in the first column that has the least degree. b. For each other nonzero entry p, use polynomial division to write $p=f q+r$, where r is the remainder upon division. Subtract q times the row with f from the row with p. c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row with that row if necessary. 2. Put the first row in the form $\left[\begin{array}{cccc}p & 0 & \cdots & 0\end{array}\right]$ by following the steps above but exchanging the words "rows" and "columns". 3. Repeat 1 and 2 until the first entry g is the only nonzero entry in its row and column. (This process terminates because the least degree decreases at each step.) 4. If g does not divide every entry of A , find the first column with an entry not divisible by g and add it to column 1, and repeat 1-4; the degree of " g " will decrease. Else, go to the next step. 5. Repeat $1-4$ with the $(m-1) \times(n-1)$ matrix obtained by removing the first row and

	column. Uniqueness: Let $\delta_{k}(M)$ be the gcd of the determinants of all $k \times k$ submatrices of $\mathrm{M}\left(\delta_{0}(M)=1\right)$. Equivalent matrices have all these values equal. The polynomials in the normal form are $f_{k}=\frac{\delta_{k}(M)}{\delta_{k-1}(M)}$ Let A be a $n \times n$ matrix, and p_{1}, \ldots, p_{r} be its invariant factors. The matrix $x I-A$ is equivalent to the $n \times n$ diagonal matrix with diagonal entries $1, \ldots, 1, p_{1}, \ldots, p_{r}$. Use the above algorithm.
	Summary
8-5	Semi-Simple and Nilpotent Operators A linear operator N is nilpotent if there is a positive integer r such that $N^{r}=T_{0}$. The characteristic and minimal polynomials are in the form x^{n}. A linear operator is semi-simple if every T-invariant subspace has a complementary Tinvariant subspace.

A linear operator (on finite-dimensional V over F) is semi-simple iff the minimal polynomial has no repeated irreducible factors. If F is algebraically closed, T is semi-simple iff T is diagonalizable.

Let F be a subfield of the complex numbers. Every linear operator T can be uniquely decomposed into a semi-simple operator S and a nilpotent operator N such that

1. $T=S+N$
2. $S N=N S$

N and S are both polynomials in T .
Every linear operator whose minimal (or characteristic) polynomial splits can be uniquely decomposed into a diagonalizable operator D and a nilpotent operator N such that

1. $T=D+N$
2. $D N=N D$

N and D are both polynomials in T . If E_{i} are the projections in the Primary Decomposition Theorem (Section 8.1) then $D=\sum_{i=1}^{k} \lambda_{i} E_{i}, N=\sum_{i=1}^{k}\left(T-\lambda_{i} I\right) E_{i}$.

9	Applications of Diagonalization, Sequences
9-1	Powers and Exponentiation Diagonalization helps compute matrix powers: $A^{k}=\left(S \Lambda S^{-1}\right)^{k}=S \Lambda^{k} S^{-1}$ To find $A^{k} x$, write x as a combination of the eigenvectors (Note S is a change of base formula that finds the coordinates $\left(c_{1}, \ldots, c_{n}\right)$) Then $x=\sum_{i=1}^{n} c_{i} x_{i}$ $A^{k} x=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} x_{i}$ If diagonalization is not possible, use the Jordan form: $A^{k}=\left(S J S^{-1}\right)^{k}=S J^{k} S^{-1}$ Use the following to take powers of a $m \times m$ Jordan block $J=\left[\begin{array}{ccccc}\lambda & 1 & \cdots & 0 & 0 \\ 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda\end{array}\right]$: $J^{r}=\left[\begin{array}{ccccc} \lambda^{r} & \binom{r}{1} \lambda^{r-1} & \cdots & \binom{r}{m-2} \lambda^{r-(m-2)} & \binom{r}{m-1} \lambda^{r-(m-1)} \\ 0 & \lambda^{r} & \cdots & & \\ \vdots & \vdots & & \ddots & \vdots \\ r \end{array}\right) \lambda^{r-(m-2)}\left(\begin{array}{c} r \\ m-2 \end{array}\right]$ For a matrix in Jordan canonical form, use this formula for each block. The spectral radius is the largest absolute value of the eigenvalues. If it is less than 1 , the matrix powers converge to 0 , and it determines the rate of convergence. The matrix exponential is defined as $\left(A^{0}=I\right)$ $\begin{gathered} e^{A t}=\sum_{i=0}^{\infty} \frac{(A t)^{n}}{n!} \\ e^{A t}=S e^{\Lambda t} S^{-1}=S\left[\begin{array}{lll} e^{\lambda_{1} t} & & \\ & \ddots & \\ & & e^{\lambda_{n} t} \end{array}\right] \end{gathered}$ Thus the eigenvalues of $e^{A t}$ are $e^{\lambda t}$. In general, $e^{A t}=a_{n-1} A^{n-1} t^{n-1}+\cdots+a_{0} I$ for some constants a_{n-1}, \ldots, a_{0}. Letting $r(x)=$ $a_{n-1} x^{n-1}+\cdots+a_{0}$, we have $e^{\lambda}=\frac{d^{i}}{d \lambda^{i}} r(\lambda)$ for $0 \leq i<\mu_{a l g}(\lambda)$ for every eigenvalue λ. Use the system of n equations to solve for the coefficients. When A is skew-symmetric, $e^{A t}$ is orthogonal.
9-2	Markov Matrices

	Let u_{k} be a column vector where the th entry represents the probability that at the k th step the system is at state i. Let A be the transition matrix, that is, $A_{i j}$ contains the probability that a system in state j at any given time will be at state i the next step. Then $\quad u_{k}=A^{k} u_{0}$
where u_{0} contains the initial probabilities or proportions.	
The Markov matrix A satisfies:	
1. Every entry is nonnegative.	
2. Every column adds to 1.	

10	Linear Forms
10-1	Multilinear Forms A function L from $V^{n}=\underbrace{V \times \cdots \times V}_{n}$, where V is a module over R , to R is 1. Multilinear (\mathbf{n}-linear) if it is linear in each component separately: $L\left(x_{1}, \ldots, c x_{i}+y_{i}, \ldots, x_{n}\right)=c L\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)+L\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)$ 2. Alternating if $L\left(x_{1}, \ldots, x_{n}\right)=0$ whenever $x_{i}=x_{j}$ with $i \neq j$. The collection of all multilinear functions on V^{n} is denoted by $M^{n}(V)$, and the collection of all alternating multilinear functions is $\Lambda^{n}(V)$. If L and M are multilinear functions on V^{r}, V^{s}, respectively, the tensor product of L and M is the function on V^{r+s} defined by $(L \otimes M)(x, y)=L(x) M(y)$ where $x \in V^{r}, y \in V^{s}$. The tensor product is linear in each component and is associative. For a permutation σ define $L_{\sigma}\left(x_{1}, \ldots, x_{r}\right)=L\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ and the linear transformation $\pi_{r}: M^{r}(V) \rightarrow \Lambda^{r}(V)$ by $\pi_{r} L=\sum_{\sigma}\left(\operatorname{sgn}(\sigma) L_{\sigma}\right)$ If V is a free module of rank $\mathrm{n}, M^{r}(V)$ is a free R -module of rank n^{r}, with basis $f_{j_{1}} \otimes \cdots \otimes$ $f_{j_{r}}\left(1 \leq j_{1}, \ldots, j_{r} \leq n\right)$ where $\left\{f_{1}, \ldots, f_{n}\right\}$ is a basis for V^{*}. When $V=R^{n}$, and L is a r-linear form in $M^{r}(V)$, $L\left(x_{1}, \ldots, x_{r}\right)=\sum_{1 \leq j_{1}, \ldots j_{r} \leq n} A\left(1, j_{1}\right) \cdots A\left(r, j_{r}\right) L\left(e_{j_{1}}, \ldots, e_{j_{r}}\right)$ where A is the rxn matrix with rows x_{1}, \ldots, x_{r}. $\Lambda^{r}(V)$ is a free R-module of rank $\binom{n}{r}$, with basis the same as before, but j_{1}, \ldots, j_{r} are combinations of $\{1, \ldots, n\}\left(1 \leq j_{1}<\cdots<j_{r} \leq n\right)$. Where the Determinant fits in: 1. $D=\sum_{\sigma}\left(\operatorname{sgn}(\sigma) f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(n)}\right)$, the f_{i} standard coordinate functions. 2. If T is a linear operator on $V=R^{n}$ and $L \in \Lambda^{n}(V)$, $L\left(T\left(x_{1}\right), \ldots, T\left(x_{n}\right)\right)=\operatorname{det}(T) L\left(x_{1}, \ldots, x_{n}\right)$ The determinant of T is the same as the determinant of any matrix representation of T. 3. The special alternating form $D_{J}=\pi_{r}\left(f_{j_{1}} \otimes \cdots \otimes f_{j_{r}}\right)\left(J=\left\{j_{1}, \ldots, j_{r}\right\}\right)$ is the determinant of the rxr matrix A defined by $A_{i k}=f_{j_{k}}\left(x_{i}\right)$, also written as $\frac{\partial\left(x_{1}, \ldots x_{r}\right)}{\partial\left(y_{j_{1}}, \ldots, y_{j r}\right)}$, where $\left\{f_{1}, \ldots, f_{n}\right\}$ is the standard dual basis.
10-2	Exterior Products Let G be the group of all permutations which permute $\{1, \ldots, r\}$ and $\{r+1, \ldots, s\}$ within themselves. For alternating r and s-linear forms L and M , define ψ : $\mathfrak{s}_{r+s} \rightarrow M^{r+s}(V)$ by $\psi(\sigma)=(\operatorname{sgn}(\sigma))(L \otimes M)_{\sigma}$. For a coset $a G$, define $\tilde{\psi}(a G)=\psi(a)$. The exterior product of L and M is

	$L \wedge M=\sum_{H \in \Im_{r+s} / G} \tilde{\psi}(H)$ Then 1. $r!s!L \wedge M=\pi_{r+s}(L \otimes M)$; in particular $L \wedge M=\frac{1}{r!s!} \pi_{r+s}(L \otimes M)$ if R is a field of characteristic 0 . 2. $(L \wedge M) \wedge N=L \wedge(M \wedge N)$ 3. $L \wedge M=(-1)^{r s} M \wedge L$ Laplace Expansions: Define $L\left(x_{1}, \ldots x_{r}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}A_{11} & \cdots & A_{1 r} \\ \vdots & \ddots & \vdots \\ A_{r 1} & \cdots & A_{r r}\end{array}\right]\right)$ and $M\left(x_{1}, \ldots x_{s}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}A_{1, r+1} & \cdots & A_{1 n} \\ \vdots & \ddots & \vdots \\ A_{s, r+1} & \cdots & A_{s n}\end{array}\right]\right)$ where $x_{i}=\left\langle A_{i 1}, \ldots, A_{\text {in }}\right\rangle \in R^{n}$ and $s=n-r$. Then $L \wedge M=\operatorname{det}(A)$, giving $\begin{array}{r} \operatorname{det}(A)=\sum_{j_{1}<\cdots<j_{r}, k_{1}<\cdots<k_{s}}(-1)^{j_{1}+\cdots+j_{r}+\frac{r(r-1)}{2}} \operatorname{det}\left(\left[\begin{array}{ccc} A\left(j_{1}, 1\right) & \cdots & A\left(j_{1}, r\right) \\ \vdots & \ddots & \vdots \\ A\left(j_{r}, 1\right) & \cdots & A\left(j_{r}, r\right) \end{array}\right]\right) \\ \operatorname{det}\left(\left[\begin{array}{ccc} A\left(k_{1}, r+1\right) & \cdots & A\left(k_{1}, n\right) \\ \vdots & \ddots & \vdots \\ A\left(k_{s}, r+1\right) & \cdots & A\left(k_{s}, n\right) \end{array}\right]\right) \\ \end{array}$

For a free R-module V of rank n , the Grassman ring over V^{*} is defined by

$$
\Lambda(V)=\Lambda^{0}(V) \oplus \cdots \oplus \Lambda^{n}(V)
$$

and has dimension 2^{n}. (The direct sum is treated like a Cartesian product.)

10-3 Bilinear Forms

A function $H: V \times V \rightarrow F$ is a bilinear form on V if H is linear in each variable when the other is held fixed:

1. $H\left(a x_{1}+x_{2}, y\right)=a H\left(x_{1}, y\right)+H\left(x_{2}, y\right)$
2. $H\left(x, a y_{1}+y_{2}\right)=a H\left(x, y_{1}\right)+H\left(x, y_{2}\right)$

The bilinear form is symmetric (a scalar product) if $H(x, y)=H(y, x)$ for all $x, y \in V$ and skew-symmetric if $H(x, y)=-H(y, x)$.
The set of all bilinear forms on V , denoted by $\mathcal{B}(V)$, is a vector space. An real inner product space is a symmetric bilinear form.

A function $K: V \rightarrow F$ is a quadratic form if there exists a symmetric bilinear form H such that $K(x) \equiv H(x, x)$. If F is not of characteristic 2,

$$
H(x, y)=\frac{K(x+y)-K(x)-K(y)}{2}
$$

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be an ordered basis for V . The matrix $A=\psi_{\beta}(H)$ with $A_{i j}=H\left(v_{i}, v_{j}\right)$ is the matrix representation of H with respect to β.

1. ψ_{β} is an isomorphism.
2. Thus $\mathcal{B}(V)$ has dimension n^{2}.
3. If $\beta^{*}=\left\{L_{1}, \ldots, L_{n}\right\}$ is a basis for V^{*} then $f_{i j}(x, y)=L_{i}(x) L_{j}(y)$ is a basis for $\mathcal{B}(V)$.
4. ψ_{β} is (skew-)symmetric iff H is.
5. A is the unique matrix satisfying $H(x, y) \equiv[x]_{\beta}^{T} A[y]_{\beta}$.

Square matrix B is congruent to A if there exists an invertible matrix Q such that $B=Q^{T} A Q$.

	Congruence is a equivalence relation. For 2 bases $\beta, \gamma, \psi_{\beta}(H)$ and $\psi_{\gamma}(H)$ are congruent; conversely, congruent matrices are 2 representations of the same bilinear form. Define $L_{x}(y)=\left(L_{H}(x)\right)(y)=H(x, y)$ and $R_{y}(x)=\left(R_{H}(y)\right)(x)=H(x, y)$. The rank of H is $\operatorname{rank}\left(L_{H}\right)=\operatorname{rank}\left(R_{H}\right)$. For n -dimensional V , the following are equivalent: 1. $\operatorname{rank}(\mathrm{H})=\mathrm{n}$ 2. For $x \neq 0$, there exists y such that $H(x, y) \neq 0$. 3. For $y \neq 0$, there exists y such that $H(x, y) \neq 0$. Any H satisfying 2 and 3 is nondegenerate. The radical of $\mathrm{H}, \operatorname{Rad}(\mathrm{H})$, is the kernel of L_{H} or R_{H}, in other words, it is orthogonal to all other vectors.
10-4	Theorems on Bilinear Forms and Diagonalization A bilinear form H on finite-dimensional V is diagonalizable if there is a basis β such that $\psi_{\beta}(H)$ is diagonal. If F does not have characteristic 2 , then a bilinear form is symmetric iff it is diagonalizable. If V is a real inner product space, the basis can be chosen to be orthonormal. $\psi_{\beta}(H)=A=Q^{T} D Q$ where \mathbf{Q} is the change-of-coordinate matrix changing standard β-coordinates into γ coordinates and $\psi_{\gamma}(H)=D$. Diagonalize the same way as before, choosing \mathbf{Q} to be orthonormal so $Q^{T}=Q^{-1}$. A vector v is isotropic if $H(v, v)=0$ (orthogonal to itself). A subspace \mathbf{W} is isotropic if the restriction of H to W is 0 . A subspace is maximally isotropic if it has greatest dimension among all isotropic subspaces. Orthogonality, projections, and adjoints for scalar products is defined the same way as orthogonality for inner products: v and w are orthogonal if $H(v, w)=0$, and $W^{\perp}=\{v \mid H(v, w)=0 \forall w \in W\}$. 1. If $V=\operatorname{Rad}(H) \oplus W$ then the restriction of H to $\mathrm{W}, \mathrm{H}_{\mathrm{W}}$, is nondegenerate. 2. If H is nondegenerate on V and subspace $W \subseteq V, W \oplus W^{\perp}=V$. 3. If H is nondegenerate, there exists an orthonormal basis for V . Sylvester's Law of Inertia: Let H be a symmetric form on finite-dimensional real V . Then the number of positive diagonal entries (the index pof H) and negative diagonal entries in any diagonal representation of H is the same. The signature is the number of positive entries and the number of negative entries. The rank, index, and signature are all invariants of the bilinear form. 1. Two real symmetric nxn matrices are congruent iff they have the same invariants. 2. A symmetric nxn matrix is congruent to $J_{p r}=\left[\begin{array}{ccc} I_{p} & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & -I_{r-p} & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} \end{array}\right]$ 3. For nondegenerate H : a. The maximal subspace W such that H_{W} is positive/ negative definite is $\mathrm{p} / \mathrm{n}-\mathrm{p}$. b. The maximal isotropic subspace W has dimension min $\{p, n-p$ \} If f^{*} is the adjoint of linear transformation f , and f^{\vee} is the dual (transpose), then $R_{H} f^{*}=$ $f^{V} R_{H}$. Let H be a skew-symmetric form on n -dimensional V over a subfield of \mathbb{C}. Then $\mathrm{r}=\mathrm{rank}(\mathrm{H})$ is

	even and there exists β such that $\psi_{\beta}(H)$ is the direct sum of the $(n-r) \times(n-r)$ zero matrix and $\frac{r}{2}$ copies of $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
10-5	Sesqui-linear Forms A sesqui-linear form f on \mathbb{R} or \mathbb{C} is The form is Hermitian if $f(x, y)=\overline{f(y, x)}$. A sesqui-linear form f is Hermitian if $f(x, x)$ is real for all x . [Note: Some books reverse x and y for sesqui-linear forms and inner products.] The matrix representation A of f in basis $\left\{v_{1}, \ldots, v_{n}\right\}$ is given by $A_{i j}=f\left(x_{j}, x_{i}\right)$. (Note the reversal.) Then $H(x, y) \equiv[y]_{\beta}^{*} A[y]_{\beta}[x]_{\beta}$. If V is a finite-dimensional inner product space, there exists a unique linear operator T_{f} on V such that $f(x, y)=\left\langle T_{f}(x), y\right\rangle$. This map $f \rightarrow T_{f}$ is an isomorphism from the vector space of sesqui-linear forms onto $\mathcal{L}(V, V) . f$ is self-adjoint iff T_{f} is self-adjoint. f on \mathbb{R} or \mathbb{C} is positive/ nonnegative if it is Hermitian and $f(x, x)>0$ for $x \neq 0 / f(x, x) \geq 0$. A positive form is simply an inner product. f is positive if its matrix representation is positive definite. Principal Axis Theorem: (from the Spectral Theorem) For every Hermitian form f on finite-dimensional V, there exists an orthonormal basis in which f has a real diagonal matrix representation.
	Summary

	Linear Transfromation L $-\mathrm{V} \rightarrow \mathrm{~W}$ - Matrix representation $\mathrm{A}_{\mathrm{ij}}=\mathrm{f}_{\mathrm{i}}\left(\mathrm{T}\left(\mathrm{v}_{\mathrm{j}}\right)\right)$ -Evaluation: $[T(v)]_{\beta}=[T]_{\beta}[v]_{\beta}$ - Change of basis: $[T]_{V}=\mathrm{Q}^{-1}[T]_{\beta} \mathrm{Q}$, Q changes y to β-coordinates - Representations in different bases are similar/ equivalent Bilinear Form H $-\mathrm{VxV} \rightarrow \mathrm{~F}$ - Matrix representation Sesqui-linear/ Hermitian $\mathrm{A}_{\mathrm{ij}}=\mathrm{H}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)$ -Evaluation: $[x]_{\beta}{ }^{\top} A[y]_{\beta}$ - Change of basis $\Psi_{V}(H)=Q^{\top} \Psi_{\beta}(H) Q$ - Representations in different bases are congruent. -Diagonalizable iff symmetric.
10-6	Application of Bilinear and Quadratic Forms: Conics, Quadrics and Extrema An equation in $2 / 3$ variables of degree 2 determines a conic/ quadric. 1. Group all the terms of degree 2 on one side, and represent them in the form $\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right] A\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ where $\mathrm{n}=2 / 3$ and A is a symmetric $n \times n$ matrix. If the coefficient of x_{i}^{2} is $c_{i i}$ then $A_{i i}=c_{i i}$. If the coefficient of $x_{i} x_{j}, i<j$ is $c_{i j}$ then $A_{i j}=A_{j i}=\frac{c_{i j}}{2}$. Diagonalize $A=Q^{T} D Q$ and write the terms as $\left(\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right] Q^{T}\right) D\left(Q\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]\right)$. The axes the conic/ quadric are oriented along are given by the eigenvectors. 2. Write the linear terms with respect to the new coordinates, and complete the square in each variable.
	Name of Quadric \quad Equation
	Ellipsoid $a_{11} x_{1}^{2}+a_{22} x^{2}+a_{33} x_{3}^{2}=1$
	1-sheeted hyperboloid $a_{11} x_{1}^{2}+a_{22} x^{2}-a_{33} x^{2}=1$
	2-sheeted hyperboloid $a_{11} x_{1}^{2}-a_{22} x^{2}-a_{33} x^{2}=1$
	Elliptic paraboloid $\quad a_{11} x_{1}^{2}+a_{22} x^{2}=x_{3}$

Hyperbolic paraboloid	$a_{11} x_{1}^{2}+a_{22} x^{2}=x_{3}$
Elliptic cone	$a_{11} x_{1}^{2}+a_{22} x^{2}-a_{33} x_{3}^{2}=0$

The Hessian matrix $A(p)$ of $f(p)$ is defined by

$$
A_{i j}=\frac{\partial^{2} f(p)}{\left(\partial t_{i}\right)\left(\partial t_{j}\right)}
$$

Second Derivative Test:
Let $f\left(t_{1}, \ldots, t_{n}\right)$ be a real-valued function for which all third-order partial derivatives exist and are continuous. Let $p=\left(p_{1}, \ldots, p_{n}\right)$ be a critical point (i.e. $\frac{\partial f}{\partial t_{i}}=0$ for all i).
(a) If all eigenvalues of $A(p)$ are positive, f has a local minimum at p .
(b) If all eigenvalues are negative, f has a local maximum at p.
(c) If $A(p)$ has at least one positive and one negative eigenvalue, p is a saddle point.
(d) If $\operatorname{rank}(A(p))<n$ (an eigenvalue is 0) and $A(p)$ does not have both positive and negative eigenvalues, the test fails.

Note: For parallel computing, working with matrices (more concise) may be more efficient.
11-2 Norms and Condition Numbers
The norm of a matrix is the maximum magnification of a vector x by A :

$$
\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

For a symmetric matrix, $\|A\|$ is the absolute value of the eigenvalue with largest absolute value.

Finding the norm:

$$
\begin{array}{r}
\|A\|^{2}=\max _{x \neq 0} \frac{\|A x\|^{2}}{\|x\|^{2}}=\max _{x \neq 0} \frac{x^{T} A^{T} A x}{x^{T} x}=\text { Largest eigenvalue of } A^{T} A \\
\|A\|=\text { Largest singular value of } A
\end{array}
$$

The condition number of A is

$$
c=\operatorname{cond}(A)=\|A\|\left\|A^{-1}\right\|
$$

	When A is symmetric, $c=\frac{\|\lambda\|_{\max }}{\|\lambda\|_{\text {min }}}$. Anyway, $c=\sqrt{\frac{\text { Largest eigenvalue of } A^{T} A}{\text { Smallest eigenvalue of } A^{T} A}}$. The condition number shows the sensitivity of a system $A x=b$ to error. Problem error is inaccuracy in A or b due to measurement/ roundoff. Let Δx be the solution error and $\Delta A, \Delta b$ be the problem errors. 1. When the problem error is in b, 2. When the problem error is in A, $\frac{1}{c} \frac{\\|\Delta b\\|}{\\|b\\|} \leq \frac{\\|\Delta x\\|}{\\|x\\|} \leq c \frac{\\|\Delta b\\|}{\\|b\\|}$ $\frac{\\|\Delta x\\|}{\\|x+\Delta x\\|} \leq c \frac{\\|\Delta A\\|}{\\|A\\|}$		
11-3	For systems: General approach: 1. Split A into S-T. $A x=b \Rightarrow S x=T x+b$ 2. Compute the sequence $S x_{k+1}=T x_{k}+b$ Requirements: 1. (2) should be easy to solve for x_{k+1}, so the preconditioner S should be diagonal or triangular. 2. The error should converge to 0 quickly: $e_{k+1}=S^{-1} T e_{k}, e_{k}=x-x_{k}$ Thus the largest eigenvalue of $S^{-1} T$ should have absolute value less than 1. Useful for large sparse matrices, with a wide band.		
	Method	S	Remarks
	Jacobi's method	Diagonal part of A	
	Gauss-Siedel method	Lower triangular part of A	About twice as fast: Often $\|\lambda\|_{\text {max }}$ is the square of the $\|\lambda\|_{\text {max }}$ for Jacobi.
	Successive overrelaxation	S has diagonal of original A, but below, entries are those of ωA.	Combination of Jacobi and Gauss-Siedel. Choose ω to minimize spectral radius.
	Incomplete LU method	Approximate L times approximate U	Set small nonzero in L, U to 0.
	Conjugate Gradients for positive definite A: Set $x_{0}=0$ (or approximate solution), $r_{0}=b, p_{0}=r_{0}$.		
	Formula	Description	
	1. $\alpha_{n}=\frac{r_{n-1}^{T} r_{n-1}}{p_{n-1}^{T} A p_{n-1}}$	Step length x_{n-1} to x_{n}	
	2. $x_{n}=x_{n-1}+\alpha_{n} p_{n-1}$	Approximate solution	
	3. $r_{n}=r_{n-1}-\alpha_{n} A p_{n-1}$	New residual $b-A x_{n}$	
	4. $\beta_{n}=\frac{r_{n}^{T} r_{n}}{r_{n-1}^{T} r_{n-1}}$	Improvement	
	5. $p_{n}=r_{n}+\beta_{n} p_{n-1}$	Next search direction	

12	Applications
12-1	Fourier Series (Analysis) Use the orthonormal system $\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \cdots$ to express a function in $[0,2 \pi]$ as a Fourier series: $f(x)=a_{0}+a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x+\cdots$ Use projections (Section 5.3) to find the coefficients. (Multiply by the function you're trying to find the coefficient for, and integrate from 0 to 2π; orthogonality makes all but one term 0 .) The orthonormal system is closed, meaning that f is actually equal to the Fourier series. Fourier coefficients offer a way to show the isomorphism between Hilbert spaces (complete, separable, infinite-dimensional Euclidean spaces). See Analysis notes for details and derivation, Differential Equations for formulas. The exponential Fourier series uses the orthonormal system $f_{n}(t)=e^{i n t}, n \in \mathbb{Z}$ instead. This applies to functions in $[-\infty, \infty]$.
12-2	Fast Fourier Transform Let $\omega=e^{\frac{2 \pi i}{n}}$. The Fast Fourier Transform takes as input the coefficients c_{j} of $\omega^{j}, 0 \leq j<n$ and outputs the value of the function $f(x)=\sum_{j=0}^{n-1} c_{j} \omega^{j}$ at $k, 0 \leq k<n$. The matrix for F satisfies $F_{j k}=\omega^{j k}$ when the rows and columns are indexed from 0 . Then $F_{n} c=y, c=\left[\begin{array}{c} c_{0} \\ \vdots \\ c_{n-1} \end{array}\right], y=\left[\begin{array}{c} y_{0} \\ \vdots \\ y_{n-1} \end{array}\right]=\left[\begin{array}{c} f(0) \\ \vdots \\ f(n-1) \end{array}\right]$ The inverse of F is $\frac{1}{n} F^{*}=\frac{1}{n} \bar{F}$. The inverse Fourier transform gives the coefficients from the functional values. To calculate a Fourier transform quickly when $n=2^{l}$, break $F_{n}=\left[\begin{array}{cc} I_{n} & D_{\frac{n}{2}}^{2} \\ I_{\frac{n}{2}} & -D_{\frac{n}{2}} \end{array}\right]\left[\begin{array}{cc} F_{\frac{n}{2}} & \\ & F_{\frac{n}{2}} \end{array}\right][\text { even-odd permutation }]$ $D_{n / 2}$ is the diagonal matrix with ($n / 2$)th roots of unity. The last matrix has $n / 2$ columns with 1 's in even locations (in increasing order starting from 0) and the next $\mathrm{n} / 2$ rows in odd locations. Then break up the middle matrix using the same idea, but now there's two copies. Repeating to F_{2}, the operation count is $\frac{1}{2} n l=\frac{1}{2} n \ln (n)$. The net effect of the permutation matrices is that the numbers are ordered based on the number formed from their digits reversed.

	http://cnx.org/content/m12107/latest/ Set $m=\frac{1}{2} n$. The first and last m components of $y=F_{n} c$ are combinations of the half-size transforms $y^{\prime}=F_{m} c^{\prime}$ and $y^{\prime \prime}=F_{m} c^{\prime \prime}$, i.e. for $0 \leq j<m$, $\left\{\begin{array}{c} y_{j}=y_{j}^{\prime}+\omega_{n}^{j} y_{j}^{\prime \prime} \\ y_{j+m}=y_{j}^{\prime}-\omega_{n}^{j} y_{j}^{\prime \prime} \end{array}\right.$
12-3	Differential Equations The set of solutions to a homogeneous linear differential equation with constant coefficients $\sum_{i=0}^{n} a_{i} y^{(i)}=0$ is a n-dimensional subspace of C^{∞}. The functions $t^{j} e^{\lambda t}(\lambda$ a root of the auxiliary polynomial $\sum_{i=0}^{n} a_{i} x^{i}=0,0 \leq j<m$, where m is the multiplicity of the root) are linearly independent and satisfy the equation. Hence they form a basis for a solution space. The general solution to the system of n linear differential equations $x^{\prime}=A x$ is any sum of solutions of the form $e^{\lambda t}\left[f(t)(A-\lambda I)^{p-1}+f^{\prime}(t)(A-\lambda I)^{p-2}+\cdots+f^{(p-1)}(t)\right] x$ where the x are the end vectors of distinct cycles that make up a Jordan canonical basis for A, λ is the eigenvalue corresponding to x, p is the order of the Jordan block, and $f(t)$ is a polynomial of degree less than p.
12-4	Combinatorics and Graph Theory Graphs and applications to electric circuits The incidence matrix A of a directed graph has a row for every edge and a column for every node. If edge i points away from/ toward node j , then $A_{i j}=-1 / 1$, respectively. Suppose the graph is connected, and has n nodes and m edges. Each node is labeled with a number (voltage), and multiplying by A gives the vector of edge labels showing the difference between

	Fixed- free Free- free Circular Each sprin Facts abo 1. K is ent 2. K is 3. K is 4. K^{-1} $u=K^{-1} f$ For the sin 1. The 2. To Continuou $A^{T} C A u=$ The discret continuous	There are n springs; one end is fixed and the other is not. (Here we assume the top end is fixed.) No springs at either end. $\mathrm{n}-1$ springs. The nth spring is connected to the first one. n springs. in is stretched or compressed by the diff ut K : tridiagonal except for the circular case: ry above or below. symmetric. positive definite for the fixed-fixed and has all positive entries for the fixed-fixed in the fixed-fixed and fixed-free case give gular case: nullspace of K is $\left[\begin{array}{l}1 \\ \vdots \\ 1\end{array}\right]$, if the whole syste the same. solve $K u=f$, the forces must add up to s case: Elastic bar f becomes the differential equation $-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right)$ te case can be used to approximate the to discrete case, multiply by Δx.	$\left[\begin{array}{cccc}1 & & & \\ -1 & \ddots & 1 & \\ & & -1 & 1\end{array}\right]$ $\left[\begin{array}{cccc}-1 & 1 & & \\ & \ddots & \ddots & \\ & & -1 & 1\end{array}\right]$ $\left[\begin{array}{cccc}1 & & -1 \\ -1 & \ddots & & \\ & & 1 & -1\end{array}\right]$ rence in displacem only nonzero entries xed-free case. and fixed-free cas the movements fro moves by the sam (equilibrium). $=f(x)$ continuous case.	$\begin{aligned} & e_{1}=u_{1} \\ & e_{2}=u_{2}-u_{1} \end{aligned}$ $\begin{aligned} & e_{n}=u_{n}-u_{n-1} \\ & e_{1}=u_{2}-u_{1} \end{aligned}$: $\begin{aligned} & e_{n-1}=u_{n}-u_{n-1} \\ & \hline e_{1}=u_{1}-u_{n} \\ & e_{2}=u_{2}-u_{1} \\ & \vdots \\ & e_{n}=u_{n}-u_{n-1} \\ & \hline \end{aligned}$ nts. are on diagonal or one the forces. amount the forces en going from the
12-6	Physics: For each coordina constant C' read coordina Axioms:	pecial Theory of Relativity ent p occurring at $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ at time t read on relative to C and $\mathrm{S}\left[\begin{array}{l}x \\ y \\ z \\ t\end{array}\right]$. Suppose S a ocity v relative to S in the +x direction, he unit of length is the light second. represent the same event with respe	ck C relative to S ' have parallel ax d they coincide w $T_{v}\left[\begin{array}{l}x \\ y \\ z \\ t\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ t^{\prime}\end{array}\right]$, S and S^{\prime}	ssign the space-time and S' moves at their clocks C and e the two sets of

	1. The speed of light is 1 when measured in either coordinate system. 2. T_{v} is an isomorphism. 3. $T_{v}\left[\begin{array}{l}x \\ y \\ z \\ t\end{array}\right]=\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ t^{\prime}\end{array}\right]$ implies $y=y^{\prime}, z=z^{\prime}$. 4. $T_{v}\left[\begin{array}{c}x \\ y_{1} \\ z_{1} \\ t\end{array}\right]=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ t^{\prime}\end{array}\right], T_{v}\left[\begin{array}{c}x \\ y_{2} \\ z_{2} \\ t\end{array}\right]=\left[\begin{array}{c}x^{\prime \prime} \\ y^{\prime \prime} \\ z^{\prime \prime} \\ t^{\prime \prime}\end{array}\right]$ implies $x^{\prime \prime}=x^{\prime}, t^{\prime \prime}=t^{\prime}$. 5. The origin of S moves in the negative x^{\prime}-axis of S^{\prime} at velocity $-v$ as measured from S^{\prime}. These axioms complete characterize the Lorentz transformation T_{v}, whose representation in the standard bases is $\left[T_{v}\right]_{\beta}=\left[\begin{array}{cccc} \frac{1}{\sqrt{1-v^{2}}} & 0 & 0 & \frac{-v}{\sqrt{1-v^{2}}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\frac{v}{\sqrt{1-v^{2}}} & 0 & 0 & \frac{1}{\sqrt{1-v^{2}}} \end{array}\right]$ 1. If a light flash at time 0 at the origin is observed at $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is observed at time t, then $x^{2}+y^{2}+z^{2}-t^{2}=0$. 2. Time contraction: $t^{\prime}=t \sqrt{1-v^{2}}$ 3. Length contraction: $x^{\prime}=x \sqrt{1-v^{2}}$
12-7	Computer Graphics
	3-D computer graphics use homogeneous coordinates: $\left[\begin{array}{l}x \\ y \\ z \\ c\end{array}\right]$ represents the point $\left(\frac{x}{c}, \frac{y}{c}, \frac{z}{c}\right)$ (the point at infinity if $\mathrm{c}=0$).
	The transformation... is like multiplying (on the left side) by... $_{\text {(}}$
	Translation by $\left(x_{0}, y_{0}, z_{0}\right) \quad\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x_{0} & y_{0} & z_{0} & 1\end{array}\right]$
	Scaling by a, b, c in x, y, and z directions $\quad\left[\begin{array}{cccc}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
	Projection onto plane through $(0,0,0)$ perpendicular to unit vector n $P=\left[\begin{array}{cc}I-n n^{T} & 0 \\ 0 & 1\end{array}\right]$
	Projection onto plane passing through Q, perpendicular to unit vector n $T_{-} P T_{+}$where T is the translation taking Q to the origin, and P is as above

References

Introduction to Linear Algebra (Third Edition) by Gilbert Strang
Linear Algebra (Fourth Edition) by Friedberg, Insel, and Spence
Linear Algebra (Second Edition) by Kenneth Hoffman and Ray Kunze
Putnam and Beyond by Titu Andreescu and Razvan Gelca
MIT OpenCourseWare, 18.06 and 18.700

Notes

I tried to make the notes as complete yet concise and understandable as possible by combining information from 3 books on linear algebra, as well as put in a few problem-solving tips. Strang's book offers a very intuitive view of many linear algebra concepts; for example the diagram on "Orthogonality of the Four Subspaces" is copied from the book. The other two books offer a more rigorous and theoretical development; in particular, Hoffman and Kunze's book is quite complete.

I prefer to focus on vector spaces and linear transformations as the building blocks of linear algebra, but one can start with matrices as well. These offer two different viewpoints which I try to convey: Rank, canonical forms, etc. can be described in terms of both. Big ideas are emphasized and I try to summarize the major proofs as I understand them, as well as provide nice summary diagrams.

A first (nontheoretical) course on linear algebra may only include about half of the material in the notes. Often in a section I put the theoretical and intuitive results side by side; just use the version you prefer. I organized it roughly so later chapters depend on earlier ones, but there are exceptions. The last section is applications and a miscellany of stuff that doesn't fit well in the other sections. Basic knowledge of fields and rings is required.

Since this was made in Word, some of the math formatting is not perfect. Oh well.
Feel free to share this; I hope you find it useful!
Please report all errors and suggestions by posting on my blog or emailing me at holdenlee1@yahoo.com. (l'm only a student learning this stuff myself so you can expect errors.) Thanks!

Things to add: Continuity arguments, linear algebra in a ring, proof of Sylvester's law

