MIT ESP Delve
AP Calculus AB
September 17, 2011

Problem Set 1

1. Find the limit numerically i.e. construct a table, then confirm your answer with a graph. State whether the limits exists.
(a)

$$
\lim _{x \rightarrow 3} \frac{\frac{1}{x+1}-\frac{1}{4}}{x-3}
$$

(b)

$$
\lim _{\alpha \rightarrow 4} \frac{\frac{1}{\alpha+1}-\frac{4}{5}}{\alpha-4}
$$

(c)

$$
\lim _{\phi \rightarrow 0} \frac{\sin \phi}{\phi}
$$

Note: Use radians, not degrees.
(d)

$$
\lim _{a \rightarrow 0} \frac{\cos a-1}{a}
$$

(e)

$$
\lim _{x \rightarrow \pi / 2} \tan x
$$

(f)

$$
\lim _{x \rightarrow 5} \frac{|x-5|}{x-5}
$$

2. Consider the following graph of $f(x)$:

Find the limits of $f(x)$ and the value of $f(x)$ at $x=-3,1,0,1,2$. State whether the limits exist.
3.

$$
f(x)=\left\{\begin{array}{lr}
x^{2}, & x \leq 2 \\
8-2 x, & 2<x<4 \\
4, & x \geq 4
\end{array}\right.
$$

Find the limit as x approaches 2 and the limit as x approaches 4 .
4. Identify three types of behavior associated with the nonexistence of a limit. Illustrate each type with a graph of a function.
5. (a) If $f(2)=4$, can you conclude anything about the limit of $f(x)$ as x approaches 2 ?
(b) If the limit of $f(x)$ as x approaches 2 is 4 , can you conclude anything about $f(2)$?
6. Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
(a) If f is undefined at $x=c$, then the limit of $f(x)$ as x approaches c does not exist.
(b) If the limit of $f(x)$ as x approaches c is 0 , then there must exist a number k such that $f(k)<0.001$.
7. Consider the function $f(x)=(1+x)^{1 / x}$. Estimate

$$
\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

by evaluating x-values near 0 . Sketch the graph of f. Hint: You should have some experience with this number. It is transcendental.

