
Notes On Topology
Day 1
Billy Cember

De�nition 1.1: For some set, A and a function, f , de�ned on a domain B ⊃ A, we say that A is closed

under f if ∀x ∈ A, f(x) ∈ A.
Example 1.2: Take the set of even intergers and the function f de�ned on Z (the integers) sending

x→ −x. The even integers are closed under f .
De�nition 1.3: A function is an ordered triple consisting of a set called the domain, a set called the

codomain, and a called the graph. A graph is a (possibly empty) set consisting solely of ordered pairs of
an element in the domain and an element in the codomain such that for each element x in the domain there
is exactly one ordered pair containing x.

**Exercise 1.4: i. Show that if a function has empty domain (i,e. the domain is the empty set), then its
graph is empty (i.e. the graph is the empty set).

ii. Show that a function cannot have empty codomain but nonempty domain.
De�nition 1.5: A function is injective or one-to-one if for each element in the codomain, there is at

most one ordered pair in the graph containing that element. A function is surjective or onto if for each
element in the codomain, there exists an ordered pair in the graph containing that element. A function that
is both injective and surjective is called bijective.

De�nition 1.6: The image of a function is the set of elements in the codomain that are each contained
in some tuple in the graph.

Exercise 1.7: A function is surjective i� (if and only if) its image and codomain are the same.
De�nition 1.8: The inverse image of a set, A, in the codomain of f is the set of points x in the the

domain such that f(x) ∈ A. We denote this set f−1(A).
Exercise 1.9: i. A function is surjective i� the inverse image of any nonempty set is nonempty.
ii. A function is injective i� the inverse image of any singleton (a set consisting of one element) is a

singleton or empty.
De�nition 1.10: The union of a family of sets, {Xi}i∈I , which we write as

⋃
i∈I Xi (where I denotes an

index set) is the set {x|∃i ∈ I x ∈ Xi}. The intersection of a family of sets, {Xi}i∈I , which we write as⋂
i∈I Xi , is the set {x|∀i ∈ I x ∈ Xi}. For �nite union (respectively intersection) we may write X1∪ ...∪X2.
Exercise 1.11: What is {1, 2, 3}∪ (3, 4, 5}? What is {1, 2, 3}∩{3, 4, 5}. What is {1, 2, 3}∪{1, 2, 3}? What

is {1, 2, 3} ∩ {4, 5, 6}?
*Exercise 1.12: What is the union of an empty family of sets (i.e. {Xi}i∈∅)?
De�nition 1.13: Two sets are disjoint if there intersection is empty. A is a subset of B if ∀x ∈ A, x ∈ B.
Exercise 1.14: Show that any set is a subset of interself.
De�nition 1.16: The empty set, which we denote ∅, the set containing no elements.
Exercise 1.15: Show that the empty set is a subset of every other set.

De�nition 2.1: A topology on a set X is a subset of P (X) (i.e. the power set of X, which is the set of
all subsets of X) that is closed under arbitrary union and �nite intersection. We call element of P (X) in
the topology and open sets. We call a set X a topological space, or simply a space, if it endowed with a
topology. More formally, an ordered pair with two elements, a set and a topology on that set, is a topological
space. Note, that these two de�nitions actually specify di�erent sets. Unless otherwise notes, if we are refer
to a topological space, we are referring to the underlying set . The set of all open sets in a topology will be
denoted Op(X).

Proposition 2.2: For any topology, T , X ∈ T and ∅ ∈ T .
Proof: For the former take the empty intersection of sets in the topology and for the latter take the

empty union of sets in the topology.
Note on notation: If an exercise is written as a statement (for example, �Any set with property A also

has property B�), then the purpose of the exercise is true prove that statement)
Exercise 2.3: For any set X, there is a bijection between the set of all topologies on X and P (X).
De�nition 2.4: For a set X, the discrete topology is the topology consisting of all subsets of P (X). The

indiscrete topology is the topology consisting only of X and ∅.
Exercise 2.5: i. Show that the discete topology and the indiscete topology are actually toplogies.
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ii. On what set are the discete topology and the indiscrete topology the same?
De�nition 2.6: For two topologies T1 and T2on a set X, T1 is �ner than T2 if T1 ⊃ T2. T1 is coarser

than T2 is T1 ⊂ T2. T1 and T2 are comparable if one is �ner than the other.
Exercise 2.7: i. For any topology, T , there is exactly one topology that is both �ner and coarser than T .
ii. Give an example of two topologies (on the same set) that are not comparable.
Example 2.8: The discete topology is �nest topology. That is, the discrete topology is �ner than every

other topology. The indiscete topology is the coarsest topology. To put this another way, in the set of
topologies (on a set) ordered by the relation (T > T ′ is T is �ner than T ), the discrete topology is the
greatest element and the indiscrete topology is the least element.

De�nition 3.1: A subset of X is closed (in a topology T ) if it is the complement of an open set.
Proposition 3.2: The set of all closed sets is closed under the operations of �nite union and arbitrary

intersection.
The following proof relies on De Morgan's Laws, which state X \

⋃
i∈I Ai =

⋂
i∈I X \Ai and X \

⋂
i∈I Ai =⋃

i∈I X \Ai (where X \Q denotes all of the elements of X that are not in Q and Q ⊂ X)
It is a good exercise to try to prove De Morgan's Laws on your own, but I will prove them on Saturday

(hint: two sets are equal if and only if they contain the same elements, meaning they are subsets of each
other).

Proof: We denote a closed set by C and an open set by U .⋃n
i=1 Ci =

⋃
X \ Ui = X \

⋂n
i=1 Ui = X \ U ′ = C ′, which is closed.⋂

i∈I Ci =
⋂

i∈I X \ Ui = X \
⋃

i∈I Ui = X \ U ′ = C ′, which is closed.
Exercise 3.3: Any topology can be speci�ed by a collection of subsets of P (X) that is closed under

arbitrary intersection and �nite union.
De�nition 3.4: A basis B for a topology T on X is a subset of T that satis�es the following properties:
(1) ∀x ∈ X ∃B ∈ B such that x ∈ B.
(2) For B1, B2 ∈ B, and any point x ∈ B1∩B2 there is a B3 isB such that B3 ⊂ B1∩B2 and x ∈ B1∩B2.
(3) For all U ∈ Op(x) and ∀x ∈ U ∃B ∈ B such that B ⊂ U and x ∈ B.
*Exercise 3.5: Any subset of P (X) satisfying conditions 1 and 2 speci�es a topology (so show that such

a set is closed under �nite intersection and arbitrary union).
Lemma 3.6: For any topology with a basis, any open set U is the union of basis elements that are subset

of U .
Lemma 3.7: A set is a basis for at most one topology.
Proposition 3.8: The folowing are equivalent (for a set of statements, we say statements are equivalent if

any statements implies all of of the other statements):
(1) T is �ner than T ′.
(2) There exists bases B and B′for T and T ′ (respectively) such that for any element B′ of B′and any

x ∈ B′, we can �nd a B ∈ B such that B ⊂ B′ and x ∈ B.
Proof: 1 =⇒ 2: Suppose 1 is true. Then every open set in T ′ is open in T . Since B′ ⊂ T ′ and T ′ ⊂ T ,

B′ ⊂ T . We are done by condition 3 of de�nition 3.4.
2 =⇒ 1: Take an open set, U in T . Write this open set as a union of basis elements. For each element in

the union there exists a B′ ∈ B′ containing that element, so by assumption we can �nd a B ∈ B containing
that element. For each x ∈ U , choose such a B containing X. Thus, U is the union of elements of B,
meaning it is open in T .

Side note 3.9: We are using the axiom of choice in the second part of the proof (where?). If we wanted
to avoid using the axiom of choice, we could reformulate the proof as a proof by contradiction (how?).

De�nition 3.10: A subbasis or subbase is a subset, S, of P (X) such that
⋃

s∈S s = X.
*Exercise 3.11: For any subbasis there is a �nest topology containing this subbasis. We say that this

topology is the topology generated by the subbase.
Proof 1: Constructive proof
Proof 2: Show that the arbitrary intersection of a set of topologies is either empty or a topology.

De�tion 4.1: (simpli�ed) The Cartesian product of a family (synonym for set) of nonempty sets,
{Xi}i∈I is the ordered collection of all sets containing exactly one element from each Xi and no other
elements. We call an ordered set of 1 element from each xi a tuple.
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De�nition 4.2: (abstract) The Cartesian product of a family (synonym for set) of sets, {Xi}i∈I is the
collection of all functions with domain I and codomain

⋃
i∈I Xi such that f(i) ∈ Xi.

** Exercise 4.3: Under de�nition 4.2, what the cartesian product of the empty set (we call such a
product, the empty product)? What is the Cartesian product of {Xi}i∈I if ∃i ∈ I such that Xi = ∅. (To
solve this problem, you must apply the de�nition of a function (1.3). Namely, how many (if there are any at
all) functions with empty domain and empty codomain? What about function with nonempty domain but
empty codomain?)

De�nition 4.4: For a family of topological spaces, the product topology on the cartesian product of
the underlying power sets is the topology generated by taking as a subbase all tuples such that each element
in the tuple is an open set in the respective topological space and all but �nitely many elements in the tuple
are the entire topological space.

De�nition 4.5: The projection map πi from a Cartesian product is the map sending an element of
the Cartesian product to its ith coordinate. The product topology is the topology by taking as a subbase
{π−1i (U)| i ∈ I andU ∈ Op(Xi)}.

* Exercise 4.6: Show that de�nitions 4.4 and 4.5 are equivalent (that is, show that the topologies generated
in each de�nition are the same. To do this, one must be able to construct a topology from a subbase, so you
should already have done a constructive proof of exercise 3.11).

Exercise 4.7: Show that the subbase in de�nition 4.4 is actually a basis.

De�nition 5.1: For a subset, A, of a space X, the subspace topology is that generated (by the subbase)
of all sets of the form (U ∩A where U ∈ Op(X)).

Exercise 5.2: Show that every open set in the subspace topology can be written as U ∩ A for some
U ∈ Op(X).

Exercise 5.3: Every closed set in the subspace topology can be written as C ∩A where C is a closed set
(in the topology on X). For any closed set C in X, C ∩A is closed in A.

Exercise 5.4: Show that if A is open, then the subspace topology is simply the family of open sets in X
that are subsets of A.

De�nition 6.1: The interior of an element B of P (X) is the greatest (in respect to the subset ordering;
A < B if A ⊂ B) open set that is a subset of B.

De�nition 6.2: The closure of an element B of P (X) is the least closed set that is a superset of B (that
is, the least closed set containing B).

Exercise 6.3: For any B ∈ P (X), the interior is the union of all open sets contained in B and the closure
is the intersection of all closed sets containing B. The converse is true for both statements.

Notation 6.4: We will denote the closure of B by B and the interior of B by Int(B).
Example 6.5: For any space X, X = X, Int(X)=X, ∅ = ∅, Int(∅)= ∅.
Exercise 6.6: For any point x and set B, x ∈ B i� every open set containing x intersects B.
De�nition 6.7: x is a limit point of B i� every open set containing x intersects B at a point other than

x itself.
Exercise 6.8: x ∈ B i� x ∈ B or x is a limit point of B.
Exercise 6.9: For any closed set, A, A = A.
Lemma 6.10: A set is closed i� it contains all of its limit points.

De�nition 7.1: A function between two topological spaces (i.e. the domain and codomain are each sets
with a topology) is continuous if the inverse image of any open set is open.

Example 7.2: Any function (between topological spaces) with domain that is discrete is continuous.
De�nition 7.3: A function is open if the image of any open set is open.
Example 7.4: Any function with codomain that is discrete is open.
De�nition 7.5: A function is closed if the image of any closed set is closed.
Exercise 7.6: A bijective function is continuous i� the inverse function is open.
Exercise 7.7: A bijective function is open i� it is closed.
De�nition 7.8: A homeomorphism is a bijection that is open and continuous.
Side note 7.9: In the category of topological spaces, the morphisms are continuous functions and a

morphism in the category is a homeomorphism i� it is an isomorphism.
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Proposition 7.10: The composition of two continuous functions is a continuous function.
Proof: Take continuous function: f : G→ H and g : H → I. We note that (f ◦ g)−1(A) = f−1(g−1(A))

(prove this!). Thus, for an open set U in I, (f ◦ g)−1(U) = f−1(g−1(U)), which is the inverse image under
f of an open set, since g is continuous. Since f is continous, such a set is open.

De�nition 7.11: A cover of a set X, is a set of open sets, Ui in X, such that
⋃
Ui = X (more precisely

this is an open cover). A subcover of a cover is a cover that is a subset of the original cover.
Proposition 7.11 (gluing): Suppose we have two spaces X and Y and a cover of X such that on each

element of the cover we have a continuous function into Y de�ned on that open set, and such that for any
two elements in the cover, the respective functions agree on their intersection. Then there exists a continuous
function from X into Y such that the function restricted to any element of the cover agree with that element
of the cover.

Proof: De�ne f(x) = fi(x) where fi is a function on an element of the cover containing x. f is well-de�ned
since if any two of our functions agree on their intersection. f is de�ned everywhere since we have a cover. For
any open set U in Y , denoting elements in our cover by Ci f

−1(U) =
⋃

i∈I(f
−1(U)∩Ci) =

⋃
i∈I(f

−1
i (U)∩Ci),

which is open since each fi is continuous and each Ci is open.

Now let us look at an actually example of a topological space!
Let us take the set of real numbers, R, (we will discuss a formal construction of the reals) with the

topology generated by open balls. That is, sets of the form {x| |x0 − x| < ε}, which we will denote B(x, ε).
Exxercise 8.1: What we just speci�ed is actually a basis.
Exercise 8.2: Any open set that is not ∅ or X can be written as a disjoint union of open intervals, that

is, sets of the for the {x|a < x < b}.
Lets give some properties and show that R satis�es those properties.
De�nition 8.3: A space is Hausdor� or T2 if for any two distinct points, there are disjoint open sets

containing each.
Proposition 8.4: R is hausdor�.
Take two points, a− b. |a− b| = δ, so take the open sets B(a, δ/2) and B(b, δ/2). (Check that these sets

are actually disjoint.)
De�nition 8.5: A space is said to be compact if every open cover has a �nite subcover.
Proposition 8.5: R is not compact.
Take the open cover consisting of B(z, 1) for z ∈ Z.
Now we will prove the �rst �hard� result of this course (note that statements 2 and 3 are named after

mathematicians!).
** Proposition 8.6: The following are equivalent for a subset A of R:
(1) A is compact.
(2) A is closed and bounded (Heine-Borel).
(3) Any sequence of points in A has a convergent subsequence (Bolzano-Weierstrass).
Proof: 1 =⇒ 2: Exercise.
2 =⇒ 3: Claim 1: On any bounded set in R, for any sequence on that set, we can �nd a monotonic

subsequence.
Since this subsequence is on a bounded set in A, it has a least upper bound (respectively greatest lower

bound if our sequence if decreasing). Such a least upper bound, x, is a limit point of A, so since A is closed,
x ∈ A. Our subsequence converges to x.

3 =⇒ 1: Exercise.
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