Calculus and Vectors Worksheet

1. The derivative of a function at a point can be thought of as the slope of the line tangent to the function at that point. Slope is the change in $\mathrm{f}(\mathrm{x})$ per change in $\mathrm{x}: m=\frac{\Delta f(x)}{\Delta x}$. To get a sense of this let's look at the function $f(x)=x^{3}-2 x^{2}-2 x-1$ pictured below:

We want to estimate the derivative at $x=1$ and we'll do that by calculating the slopes of different secant lines (lines that intersect the function at 2 points).
a. Calculate the slope of the line that runs through the points:
i. $(0, f(0))$ and $(2, f(2))$
ii. $(.5, f(.5))$ and $(1.5,(f(1.5))$
iii. $(.75, f(.75))$ and $(1.25, f(1.25))$
iv. $(.875, f(.825))$ and $(1.125, f(1.125))$
b. Now calculate the first derivative $f^{\prime}(x)$ and evaluate at $x=1$.
c. How does the derivative at $x=1$ compare to the slopes of the secant lines?
2. Find the first derivative $d y / d x$ of the following functions. You can find the second derivative $d^{2} y / d x^{2}$ if you want a challenge.
a. $y=4 x^{3}-3 x^{2}+x+5$
b. $y=2 x^{3}-5 x^{2}-2 x+9$
c. $y=\sin (2 x+1)$
d. $y=\sin \left(x^{2}\right)$
e. $y=(3 x-1) /(2 x+5)$
f. $y=\left(x^{2}-x-12\right) /(x+3)$
g. $y=\sin (x) \cos (x)$
h. $y=\sin ^{2}(x)$
i. $\quad y=\sin (x) / \cos (x)$
j. $y=e^{3 x}$
k. $y=e^{2 x-1}$
l. $y=2^{x}$
m. $y=e^{3 x} \cos (2 x-5)$
n. $y=\ln \left(x^{2}\right)$
o. $y=\log _{10}(x)$
p. $y=\ln \left(\sin \left((x+2)^{2}\right)\right.$
3. The first and second derivatives are useful for finding the minima and maxima of functions. Let's look at this with the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+18$ pictured below.

a. Find the first derivative $f^{\prime}(x)$ and second derivative $f^{\prime \prime}(x)$.
b. Find the zeroes of the first derivative. For what values of x is $f^{\prime}(x)=0$? Look at the graph of $f(x)$. What is special about these points?
c. Evaluate the second derivative $f^{\prime \prime}(x)$ at the zeroes of the first derivative. How does the sign of the second derivative correspond with the graph?
4. Take the indefinite integral by finding the antiderivative.
a. $\int 3 x^{2}+4 x+1 d x$
b. $\int x^{4}+4 x^{3}-3 x+7 d x$
c. $\int e^{2 x} d x$
d. $\int 1 /(x+2) d x$
5. Take the definite integral.
a. $\int_{0}^{5} 6 x^{2}+2 x-15 d x$
b. $\int_{-2}^{2} x^{4}+4 x^{3}-3 x+7 d x$
c. $\int_{-\pi}^{\pi} \sin (x) d x$
d. $\int_{-\pi}^{\pi} \cos (x) d x$
6. Convert these vectors from rectangular form to polar form or vice versa.
a. $\quad V=(3,4)$
b. $\quad V=(2,-2)$
c. $|V|=3 \sqrt{2}, \theta=135^{\circ}$
d. $|V|=4 \sqrt{3} / 3, \theta=30^{\circ}$
7. Add these vectors by converting to rectangular form. Give answers in polar form.
a. $|V|=3 \sqrt{2}, \theta=45^{\circ}$ and $(3,6)$
b. $|V|=4 \sqrt{3} / 3, \theta=30^{\circ}$ and $|V|=4 / 3, \theta=-60^{\circ}$

