Calculus and Vectors Worksheet

1. The derivative of a function at a point can be thought of as the slope of the line tangent to the function at that point. Slope is the change in f(x) per change in $x: m = \frac{\Delta f(x)}{\Delta x}$. To get a sense of this let's look at the function $f(x) = x^3 - 2x^2 - 2x - 1$ pictured below:

We want to estimate the derivative at x = 1 and we'll do that by calculating the slopes of different secant lines (lines that intersect the function at 2 points).

- a. Calculate the slope of the line that runs through the points:
 - i. (0, f(0)) and (2, f(2))
 - ii. (.5, f(.5)) and (1.5, (f(1.5)))
 - iii. (.75, *f*(.75)) and (1.25, *f*(1.25))
 - iv. (.875, f(.825)) and (1.125, f(1.125))
- b. Now calculate the first derivative f'(x) and evaluate at x = 1.
- c. How does the derivative at x = 1 compare to the slopes of the secant lines?
- 2. Find the first derivative dy/dx of the following functions. You can find the second derivative d^2y/dx^2 if you want a challenge.

a.	$y = 4x^3 - 3x^2 + x + 5$	i. $y = \sin(x) / \cos(x)$
b.	$y = 2x^3 - 5x^2 - 2x + 9$	j. $y = e^{3x}$
c.	$y = \sin(2x+1)$	k. $y = e^{2x-1}$
d.	$y = \sin(x^2)$	1. $y = 2^x$
e.	y = (3x - 1)/(2x + 5)	m. $y = e^{3x}\cos(2x - 5)$
f.	$y = (x^2 - x - 12)/(x + 3)$	n. $y = \ln(x^2)$
g.	$y = \sin(x)\cos(x)$	o. $y = \log_{10}(x)$
h.	$y = \sin^2(x)$	p. $y = \ln(\sin((x+2)^2))$

3. The first and second derivatives are useful for finding the minima and maxima of functions. Let's look at this with the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 18$ pictured below.

- a. Find the first derivative f'(x) and second derivative f''(x).
- b. Find the zeroes of the first derivative. For what values of x is f'(x) = 0? Look at the graph of f(x). What is special about these points?
- c. Evaluate the second derivative f''(x) at the zeroes of the first derivative. How does the sign of the second derivative correspond with the graph?
- 4. Take the indefinite integral by finding the antiderivative.
 - a. $\int 3x^2 + 4x + 1 \, dx$
 - b. $\int x^4 + 4x^3 3x + 7 \, dx$
 - c. $\int e^{2x} dx$
 - d. $\int 1 / (x + 2) dx$
- 5. Take the definite integral.
 - a. $\int_{0}^{5} 6x^{2} + 2x 15 \, dx$ b. $\int_{-2}^{2} x^{4} + 4x^{3} - 3x + 7 \, dx$ c. $\int_{-\pi}^{\pi} \sin(x) \, dx$ d. $\int_{-\pi}^{\pi} \cos(x) \, dx$
- 6. Convert these vectors from rectangular form to polar form or vice versa.
 - a. V = (3, 4)b. V = (2, -2)c. $|V| = 3\sqrt{2}, \theta = 135^{\circ}$ d. $|V| = 4\sqrt{3} / 3, \theta = 30^{\circ}$
- 7. Add these vectors by converting to rectangular form. Give answers in polar form.
 - a. $|V| = 3\sqrt{2}, \theta = 45^{\circ} \text{ and } (3,6)$
 - b. $|V| = 4\sqrt{3} / 3$, $\theta = 30^{\circ}$ and |V| = 4 / 3, $\theta = -60^{\circ}$