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1 Introductions

• Who: We are rising juniors at the University of Rochester. Both of us are majoring in mathematics
and computer science.

• Contacting us: You can contact us via the teacher email for this class, M14085-teachers@esp.mit.edu.
We do not bite (even virtually)! Please do not hesitate to email us with questions, comments, or even
just to say hello.

2 How will this course run?

• Class sessions every Saturday at noon EDT.

• Notes containing material covered in class (and more) will be sent out after class.

• Class material will often build on previous weeks. Please do not hesitate to email us if you feel like
you need to catch up.

• There is no homework! We might mention some things to think about if you are interested. Again,
feel free to email if you would like to discuss those in greater detail.

3 What is a number?

• A way to count things.

• Measuring the physical world (length, weight, etc.).

• A means to making predictions.

• The basis for computation.

3.1 Some History

• Circa 35,000 BCE: Tally marks. Used to count simple things such as sheep going out to graze.

• 3,000 BCE: The Egyptians develop one of the first base-10 number systems.

• 1,750 BCE: The Babylonians develop a base 60 system (although with exceptions for certain numbers).
This did not survive too long as it requires at least 60 different symbols and is difficult to do arithmetic
with.

• 500 – 300 BCE: The Greeks and Indians (among other cultures) develop a basis for the study of whole
number ratios.

– Euclid’s Elements published circa 300 BCE is one of the best known treatises that works with
ratios. It is also the foundation of Euclidean geometry and formal reasoning.
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– Some mentions of the existence of irrational numbers were present, but not widely accepted.1

• 300 – 200 BCE: The digits now used internationally make their appearance gradually in ancient India.
The first formal use of the numeral 0 was seen in the first century CE.

If you are interested, [4] (more specifically section 4 in the article) has a nice overview of the development
of the theory of numbers, and [1] contains an overview of the history of numbers from a more practical
perspective.

4 The Need for Formalism

Let us think about defining a set. What is a set? Intuitively, a set is a collection of “objects”. Is a set itself
an “object”? Why not? Then a set of sets is also a set. Consider the following set:

R = The set of all sets which do not contain themselves

According to our definition, R is a valid set. Does R contain itself? If it did, then R wouldn’t be the set
of all sets not containing themselves. Otherwise if R didn’t contain itself then the definition of R dictates
that R must contain itself. The set R is thus a paradox under our definition of “set”.2

This demonstrates that intuitive definitions can sometimes lead to strange paradoxes. To avoid these,
mathematicians go to great lengths to provide robust formal definitions for mathematical concepts. In the
case of sets, these formal definitions led to Zermelo-Frenkel set theory, an axiomatic system to deal with
sets. In the case of numbers, this led to the constructions we will be talking about.

Zermelo-Frenkel set theory is outside the scope of this course. However, it is still very cool, and if you are
interested we recommend checking out [3], which gives a brief overview of the Zermelo-Frenkel axioms with
some applications. The document also gives a set theoretic formalization of the natural numbers, which is
an alternative formalization to the one we will look at.

4.1 Axiomatic Systems

All of your favorite theorems—perhaps the fundamental theorem of calculus or the Pythagorean theorem—
are true because they can be proved. If you think about it, other true statements had to be used in the course
of each of these proofs. Why can we trust those results? Because they were also proved. If we continue
this process further and further back, it is clear that there must be some set of initial “truths” forming the
foundation. These truths are known as axioms: statements that are assumed to be true without proof.

An axiomatic system is a neat way of formalizing many mathematical constructs. In an axiomatic system,
we begin with a finite set of axioms which we consider to be true.3 Other statements are said to be true if
they can be logically derived from the axioms. True statements are often labelled theorems. Elementary
(“Euclidean”) geometry is an example of an axiomatic system, and so is the formalization of natural numbers
we will see today.

4.2 A note on proofs from axioms

While we have defined axiomatic systems quite thoroughly, there still remains the question of how one goes
about deriving new statements (theorems) from the axioms. Intuitively, we assume that any “logically made”
mathematical argument that builds on the axioms and reaches the theorem we want to prove constitutes a
valid proof. This isn’t fully formal since “logical” is still not well defined. For the purposes of this class, we
will work with the intuitive definition of “logical” that we all have from school. However for completeness
(and because somebody asked us after class) we are writing this quick note.

1Pythagoras was a firm believer in the “absoluteness” of numbers, and believed that all physically relevant quantities come
in whole number ratios. He even went so far as to commit murder to defend his beliefs!

2This paradox is known as Russel’s paradox, and was discovered by Bertrand Russel at the turn of the twentieth century.
3Usually these are statements that one would think are “obviously correct”. However it is possible (and interesting) to build

and play with axiomatic systems with axioms that don’t follow real-world intuition. So-called “non-Euclidean geometries” are
examples of such systems.
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In logic and set theory (which is the field of math that deals with this), axiomatic systems are almost
always accompanied with a finite set of rules of inference. Rules of inference are symbolic rules that take
one or more statements and combine them to produce one statement. Once we have a set of axioms and a
set of rules of inference, we say that a statement is true (i.e. is a theorem) if there is some way to repeatedly
apply the rules of inference to the axioms to obtain the statement in consideration. This means that the
truth of a statement depends not only on the axioms but also on the rules of inference. For our purposes,
these rules of inference end up being those of propositional logic, which conform to our intuitive ideas of what
“logical” means. However it is possible (and interesting!) to see what happens if different rules are used.
We recommend the book Gödel, Escher, Bach by Douglas Hofstadter ([2]) to those interested in this kind
of mathematics. It gives a great introduction to logic and draws interesting correspondences to other fields
including art and music. It also introduces Gödel’s incompleteness theorems, which in Mandar’s opinion are
two of the deepest results in all of mathematics.

5 Notation

For the purposes of this class, it is okay to think about sets intuitively (under the assumption that set theory
works without paradoxes [which it does under the system of ZF set theory]).

Let A and B be sets. Below is a list of most of the notation we will be using throughout the course:

• {1, 2, 3} is a set containing 1, 2, and 3.

• ∅ denotes the empty set.

• a ∈ A means that a is a member of the set A.

• The union of A and B is the set containing those elements in either A or B. We denote it by A ∪B.

• The intersection of A and B is the set of elements common to A and B. We denote it by A ∩B.

• The power set of A is the set of all subsets of A. We denote it by P(A).

• N, Q, R refer to the sets of natural, rational, and real numbers respectively.

• ∀, ∃, =⇒ , are shorthand for for all, there exists, and implies.

6 The Peano Axioms: Formalizing N
6.1 The Peano Axioms

We will now define the set of natural numbers, N, via the following 9 axioms. These axioms are known as
the Peano Axioms. The first 4 axioms define equality on the set N.

Axiom 1: For every x ∈ N, we have x = x. (reflexivity)

Axiom 2: For every x, y ∈ N, if x = y then y = x. (symmetry)

Axiom 3: For every x, y, z ∈ N, if x = y and y = z then x = z. (transitivity)

Axiom 4: For all x and y, if x ∈ N and x = y then y ∈ N (closure of equality)

The remaining 5 axioms define the set N.

Axiom 5: 0 is a natural number, i.e. 0 ∈ N

Axiom 6: We denote the successor of a number x by S(x). The second Peano axiom states that if x ∈ N,
then S(x) ∈ N, i.e. the successor of a natural number is a natural number.

Axiom 7: There is no x ∈ N such that S(x) = 0. In other words, 0 is not the successor of any natural
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number.

Axiom 8: For all x, y ∈ N, if S(x) = S(y) then x = y.

Notice that if we only had axioms 1 to 7, then the set {0, 1} with S(0) = 1 and S(1) = 1 would be a
perfectly valid candidate for N. This is clearly not what we want, and axiom 8 ensures that.

Axiom 9: Let P (x) be a statement about the natural number x. If:

• P (0) is true

• Whenever P (n) is true for some n ∈ N, P (S(n)) is also true

then P (x) is true for all x ∈ N. This axiom is also known as the Principle of Mathematical Induction, and
is a very useful tool for proving mathematical statements.4

As shorthand, we denote S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, and so on, as to retain the numerals
we are familiar with. If you feel inclined, however, denote these in any way you can think of!

6.2 Arithmetic on N
We have defined the set N, but we still have no way of working with the elements of N. In this section we
will formalize, using only the above 9 axioms, the two basic operations that can be carried out on natural
numbers: addition and multiplication.

6.2.1 Addition

We define addition recursively:

Definition:

• For any a ∈ N, a + 0 = a

• For any a, b ∈ N, a + S(b) = S(a + b)

Example: Let us try to show that 1 + 2 = 3.

1 + 2 = 1 + S(1)

= S(1 + 1)

= S(1 + S(0))

= S(S(1 + 0))

= S(S(1))

= S(2)

= 3

Phew! Thank goodness...

6.2.2 Multiplication

Multiplication is defined in a way which should be rather familiar to you, perhaps bringing back memories
of counting on your fingers in grade school. We define multiplication in terms of repeated addition. Again,
our definition is recursive.

Definition:

• For any a ∈ N, a · 0 = 0

4This axiom is often stated in an alternative manner using the notion of an “inductive set”. For the purposes of this class
we won’t be going over that, but in case you are interested [5] states axiom 9 based on inductive sets.
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• For any a, b ∈ N, a · S(b) = a + (a · b)

Example: We show that 2 times 2 equals 4.

2 · 2 = 2 · S(1)

= 2 + (2 · 1)

= 2 + (2 · S(0))

= 2 + (2 + (2 · 0))

= 2 + (2 + 0)

= 2 + 2

= 2 + S(1)

= S(2 + 1)

= S(2 + S(0))

= S(S(2 + 0))

= S(S(2))

= S(3)

= 4

6.3 Ordering the Natural Numbers

Definition: For any a, b ∈ N, we say that a ≤ b if there exists some s ∈ N such that a + s = b. If we can
find s 6= 0 then a < b.

6.4 More Information

A more thorough explanation of the formalization can be found at [5]. We encourage you to take a look at
it.

7 Some things to think about

Show that:

• 3 · 2 = 6

• a · 1 = a.

• a · b = b · a.

• a + b = b + a

• a · (b + c) = (a · b) + (a · c)

• a + (b + c) = (a + b) + c

• a · (b · c) = (a · b) · c
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