Solving the Cubic Equation

Kevin Ren

November 16, 2018

1.1 Problem-Solving Strategies

1. Rational root theorem: Let a, b, c, d be integers. If $a x^{3}+b x^{2}+c x+d=0$ has a rational root r, then the numerator of r divides d and the denominator divides a.
2. Synthetic division: The example shows $x^{3}+6 x^{2}+4 x-8$ divided by $x+2$ is $x^{2}+4 x-4$.

3. Reducing a cubic: For any cubic $a x^{3}+b x^{2}+c x+d=0$ with integer coefficients, the substitution $x=\frac{y-b}{3 a}$ allows you to obtain a cubic equation in y with no y^{2} term, leading term y^{3}, and integer coefficients.
4. Discriminant: For the cubic $x^{3}-m x-n=0$, define $\Delta=\left(\frac{m}{3}\right)^{3}-\left(\frac{n}{2}\right)^{2}$. The reduced cubic has three distinct real roots if $\Delta>0$, three real roots with one double root if $\Delta=0$, and one real root and two complex conjugate roots if $\Delta<0$.
5. Reducible case: Suppose $\Delta \leq 0$. Choose real numbers p, q such that $p+q=n$ and $p q=\left(\frac{m}{3}\right)^{3}$. Then $x=\sqrt[3]{p}+\sqrt[3]{q}$ is a solution to the cubic. The other two solutions are $\omega \sqrt[3]{p}+\omega^{2} \sqrt[3]{q}$ and $\omega^{2} \sqrt[3]{p}+\omega \sqrt[3]{q}$, where $\omega=\frac{-1+i \sqrt{3}}{2}$ is a cubic root of unity. Don't forget to convert back from the reduced form to the original form!
6. Irreducible case: Suppose $\Delta>0$. Find θ such that $\cos 3 \theta=\frac{n / 2}{(m / 3)^{3 / 2}}$. Then the solutions are $2 \sqrt{\frac{m}{3}} \cos \left(\theta+\frac{2 k \pi}{3}\right)$, where $k=0,1,2$.
Example. To solve the cubic $x^{3}-12 x+16=0$, we compute $\Delta=64-64=0$, so we proceed as in Reducible case. We find p, q such that $p+q=-16$ and $p q=4^{3}=64$. By inspection, we can choose $p=-8$ and $q=-8$. Thus $\sqrt[3]{p}=-2$ and $\sqrt[3]{q}=-2$, so the solutions are

$$
(-2)+(-2)=-4,(-2) \omega+(-2) \omega^{2}=2,(-2) \omega^{2}+(-2) \omega=2 .
$$

1.2 Computations

Find all solutions to the given equations. Use Wolfram-Alpha to check your answers. (Question 9 was from the 2014 AIME.)

1. $3 x^{3}+81=0$
2. $x^{3}-18 x-30=0$
3. $x^{3}+3 x^{2}+15 x+1=0$
4. $x^{3}+8 x+24=0$
5. $x^{3}-12 x-8=0$
6. $2 x^{3}-6 x^{2}+36 x-27=0$
7. $3 x^{3}+11 x^{2}+2 x-2=0$
8. $27 x^{3}+27 x^{2}-1=0$
9. $-8 x^{3}+3 x^{2}+3 x+1=0$
10. $\left(x^{3}+3 x^{2}-2\right)^{2}-3=0$

1.3 Problems

Please justify your answers to the best of your ability.

1. Suppose a cubic polynomial $f(x)=x^{3}-m x-n$ has a double root r.
(a) Show that the roots of f are r, r, and $-2 r$.
(b) Find a formula for r in terms of m, n.
2. (a) Let $\omega=\frac{-1+i \sqrt{3}}{2}$. By expanding the right-hand side, show that

$$
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x+y \omega+z \omega^{2}\right)\left(x+y \omega^{2}+z \omega\right) .
$$

(b) Find the roots of $x^{3}-6 x+9$.
(c) How does this identity relate to finding the roots of a cubic?
3. Verify Problem-Solving Strategy 4.
4. (a) Compute the value of $\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}$.
(b) Show that $\sqrt[3]{3+\sqrt{10}}+\sqrt[3]{3-\sqrt{10}}$ is irrational.
5. We will try to find a cubic polynomial with roots $r_{1}=\cos \frac{2 \pi}{7}, r_{2}=\cos \frac{4 \pi}{7}, r_{3}=\cos \frac{6 \pi}{7}$.
(a) Let $x=\cos \frac{2 \pi}{7}+i \sin \frac{2 \pi}{7}$ be a primitive seventh root of unity, i.e. $x^{7}=1$ and $x \neq 1$. Show that $1+x+x^{2}+\cdots+x^{6}=0$.
(b) Use $\cos x=\cos (2 \pi-x)$, the previous result, and DeMoivre's theorem to show that $r_{1}+r_{2}+r_{3}=-\frac{1}{2}$.
(c) Use product-to-sum relations to compute $r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$ and $r_{1} r_{2} r_{3}$.
(d) Find a cubic polynomial with integer coefficients and roots r_{1}, r_{2}, r_{3}.
(e) Try computing its roots using the standard methods. What do you find?

