A. Evaluate the following limits graphically or numerically.

1) $\lim _{x \rightarrow 3} \frac{1}{x-3}$
2) $\lim _{x \rightarrow 3} \frac{\frac{1}{x+1}-\frac{1}{4}}{x-3}$
3) $\lim _{x \rightarrow-2}|x-2|$
B. Evaluate the following limits graphically, and then find the domain.
4) $\lim _{x \rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}$
5) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
C. Determine whether the statement is true or false. If it is false, explain why or give an example that shows it as false.
6) If f is undefined at $x=c$, then the limit of $f(x)$ as x approaches c does not exist.
7) If the limit of $f(x)$ as x approaches c is 0 , then there must exist a number k such that $f(k)<$ 0.0001 .
8) If $f(c)=L$, then $\lim _{x \rightarrow c} f(x)=L$.
9) If $\lim _{x \rightarrow c} f(x)=L$, the $f(c)=L$.
D. Consider the function $f(x)=(1+x)^{1 / x}$. Estimate the limit $\lim _{x \rightarrow 0}(1+x)^{1 / x}$ by evaluating f at x-values near 0 . Sketch the graph of f.
