
Mathematics Notes

Welcome to “Insane 2hr Cram Session of Undergraduate Mathematics,” given on November 17th at MIT
Splash! Let’s get to it.

1 Topics we’ll touch on:

1. Calculus: partial derivatives, multiple integrals, Stokes’ theorem, di↵erential equations

2. Linear algebra: an introduction to proofs, fields, vector spaces, linear transformations and func-
tionals, matrix algebra, eigenvalues and eigenvectors

3. Real analysis: metric spaces, general topology, continuity, di↵erentiation, integration, Lebesgue
measure, convergence, analytic functions, Hilbert and Banach space

4. Complex analysis: complex numbers, holomorphic functions of a single variable, power series,
contour integration, residues, Cauchy’s theorem

5. Probability theory: random variables, measure theory, distributions (uniform, exponential, beta,
gamma, normal), Poisson processes, expectation and moments, conditioning, law of large numbers,
central limit theorem, martingales, stochastic processes

6. Algebra/algebraic topology: groups, subgroups, rings, modules, category theory, homeomor-
phism, homotopy, fundamental groups, covering spaces

7. Di↵erential topology/geometry: manifolds, smoothness, immersions and embeddings, winding
numbers, di↵erential forms, de Rham cohomology, Lie groups

8. A brief discussion of other applications

9. Tips for succeeding in mathematics at college

2 Calculus

Let f : Rn ! R, f : (x
1

, ..., x
n

) 7! y be a di↵erentiable function (we’ll get to what “di↵erentiability”
means later, but it’s basically what you think it means). The partial derivative of f w.r.t. x

i

,
denoted by @f

@xi
is given by df

dxi
, where x

k

for k 6= i is treated as a constant.

Example 2.1. Let f : R3 ! R be given by f(x, y, z) := x2y + 2yez + x sin(z). Then

@f

@x
= 2xy + sin(z).

⇤

A multiple integral of f on an area T := I
1

⇥ ...⇥ I
n

for I
j

:= [a
j

, b
j

] can be evaluated as

Z

T

f(x)dx =

Z

T

f(x
1

, ..., x
n

)dx
1

...dx
n

=

Z
bn

an

...

Z
b1

a1

f(x
1

, ..., x
n

)dx
1

...dx
n

.

This means you “evaluate the integrals one-by-one.” In certain cases you can interchange the integrals,
and we’ll get to that later.

Example 2.2. Let f(x, y, z) = x2y2 + z, and T = [0, 1]3. Then

Z

T

f(x, y, z)dxdydz =

Z
1

0

✓Z
1

0

✓Z
1

0

x2y2 + zdx

◆
dy

◆
dz =

Z
1

0

✓Z
1

0

y2

3
+ zdy

◆
dz

=

Z
1

0

1

9
+ zdz =

1

9
+

1

2
.
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But what if you wanted to evaluate the integral over an area that’s not square (or expressible as a
product of intervals)? In linear algebra, you learn how to compute the integral over a parallelogram by
using linear transformations to transform the unit interval. In other cases, the theorem below may help...

What other thing is important in single-variable calculus? The fundamental theorem of course! The
most general form is called Stokes’ theorem, from which the gradient theorem, divergence theorem,
and the classical Green’s theorem follows (google these if you are not familiar with them; but really, all
you need is Stokes’.)

Theorem 2.3. (Stokes’ theorem) Let � be a “patch of area” (orientable manifold, to be exact),
and ! a di↵erential form. Then Z

@�

! =

Z

�

d!,

where @ denotes the boundary operator and d denotes exterior di↵erentiation.
Proof. Relegated to the di↵erential topology section. ⌅

The boundary operator @ is, in most cases, intuitively what you think it is. If � is a triangle in
R2 made by the sides [a

0

, b
0

], ..., [a
2

, b
2

], then @� is simply the union of the line segments, [
i

[a
i

b
i

]. A
di↵erential form is basically anything that you think can be integrated, and exterior di↵erentiation is
like “di↵erentiating a di↵erential form.”

This sounds shady, and I don’t want to handwave this like usual multivariable calculus usually does
(grad, div, and curl are di↵erential forms that you can also exterior di↵erentiate), so we’ll postpone
Stokes’ theorem until our section of di↵erential topology.

Our last topic of this brief introductory section is di↵erential equations, equations involving deriva-
tives. For example, the di↵erential equation f = df

dx

is solved by f(x) = ex. In general, the n-th order
linear di↵erential equation

a
n

f (n)(x) + ...a
1

f 0(x) + a
0

f(x) + c = 0

is given by ezx, where z in a complex number (use the Euler identity eix = cosx+ i sinx to see how you
get sin and cos for degree two equations). A partial di↵erential equation is a di↵erential equation
involving partial derivatives, something we’ll get to later.

3 Linear algebra

Typically, linear algebra is an introduction to proof-based mathematics. You should be familiar with
the following symbols: R,C,Z,N,Q,2, 8, 9, !,⇠, {}, :, ...

Try to decipher the following statements, and find out if they’re true or not: (1) 8a 2 Q, 9b 2 {x :
|x| 6= 1} : ab /2 C. (2) @!z 2 C : az 2 N.

Okay, let’s move on to linear algebra. The main point of linear algebra is to first generalize the notion
of “vector,” then define operations between vectors so that we can give the space of all vectors more
structure. We can then, surprisingly, derive a lot of conclusions from the theory, and applying these
conclusions back on Rn or something more familiar gives us nice results.

Definition 3.1. A field F is a set of elements satisfying the following properties:
1. Closure under addition and multiplication: 8a, b 2 F, a+ b, a · b 2 F .
2. Associativity of addition and multiplication: 8a, b, c 2 F, a+(b+c) = (a+b)+c and a·(b·c) = (a·b)·c.

3. Commutativity of addition and multiplication: 8a, b 2 F, a+ b = b+ a and a · b = b · a.
4. Existence of additive and multiplicative identities: 90, 1 2 F, 0 6= 1 : 8a 2 F, a+0 = a and a ·1 = a.

5. Existence of additive inverses and multiplicative inverses: 8a 2 F, 9 � a 2 F : a + (�a) = 0 and
8a 6= 0 2 F, 9a�1 2 F : a · a�1 = 1. Let a� b := a+ (�b) and a/b := a cot b�1.
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6. Distributivity of multiplication over addition: 8a, b, c 2 F, a · (b+ c) = (a · b) + (a · c).

For those of you that know abstract algebra, a field is a type of commutative ring. Questions to ask
yourself: is R a field? How about Q? How about Z?

Given a field F , we can define a vector space over it by using the field’s elements for scalar mul-
tiplication.

Definition 3.2. A vector space V over a field F , denoted as (V, F,+, ·) (but oftentimes just V ),
is a set V along with binary operations + and · such that the following hold:

1. Commutativity for + and associativity for +, ·.
2. Additive identity.
3. Additive inverse.
4. Multiplicative identity.
5. Distributive properties.

(As an exercise, write down what each criteria means.) Elements v 2 V are called vectors. A vector
space over R is called a real vector space, and a vector space over C is called complex vector space.

Vector spaces have many wonderful properties. For example, we can prove uniqueness of additive
identities and additive inverses:

Proposition 3.3. A vector space V has a unique additive identity, and every element in a vector
space has a unique additive inverse.

Proof. For the first part, let 0 and 00 denote additive identities for V . Then 00 = 00 + 0 = 0 and we
have 00 = 0. Check the second statement yourselves. ⌅

Definition 3.4. U ⇢ V is called a subspace of V if U is also a vector space.

Since commutativity, associativity, and distributivity are inherited from V , to show that U is a sub-
space, we only need to verify that it has an additive identity and it’s closed under + and ·. For example,
the subspaces of R2 are {0}, R2, and lines through the origin. What about R3?

Definition 3.5. The sum of U
1

, ..., U
m

is given by U
1

+ ...+U
m

= {u
1

+ ...+u
m

: u
1

2 U
1

, ..., u
m

2 U
m

}.
V is a direct sum of U

1

, ..., U
m

, e.g. V = U
1

� ...� U
m

, if each element of V can be written uniquely
as a sum u

1

+ ...+ u
m

for u
i

2 U
i

.

Proposition 3.6. If U
1

, ..., U
n

are subspaces of V , then V = U
1

� ...� U
n

i↵
1. V = U

1

+ ...+ U
n

2. the only way to write 0 as a sum u
1

+ ...+ u
n

, where each u
i

2 U
i

, is by taking all the u
i

’s equal
to 0.

One direction is trivial; for the other, to show that v = u
1

+ ...+ u
n

is a unique representation, suppose
we have another one and just take the di↵erence.

Proposition 3.7. If U and W are subspaces of V , V = U �W i↵ V = U +W and U \W = {0}.

Let’s leave this subspace stu↵ at the back of our minds, and turn to the central object of study in
linear algebra. As the name implies, linear algebra is about the study of linear transformations on
vector spaces, but what does “linear” mean exactly?

Definition 3.8. A linear combination of v
1

, ..., v
m

2 V is a vector of the form
P

m

i=1

a
i

v
i

, where
a
i

2 F . span(v
1

, ..., v
m

) := {
P

m

i=1

a
i

v
i

}. If V = span(v
1

, ..., v
m

), then (v
1

, ..., v
m

) spans V . If V can be
spanned by a list of vectors, then it is finite dimensional; otherwise it is infinite dimensional.

Definition 3.9. v
1

, ..., v
m

2 V are linearly independent if the only choice of a
1

, ..., a
m

2 F :
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P

m

i=1

a
i

v
i

= 0 is a
1

= ... = a
m

= 0. Else it is linearly dependent. A basis of V is a list of vectors in
V that is linearly independent and spans V .

Is the list (0, 1), (1, 0) 2 R2 linearly dependent? What about (0, 1, 0), (0, 0, 1), (0, 1, 1) 2 R3? What
is a basis for R2? R3? Rn? The set of polynomials of degree m? It should be obvious that every
finite-dimensional v.s. has a basis. Below we’ll state a few properties of span and basis, so that you’re
more confortable with them.

Lemma 3.10. If (v
1

, ..., v
m

) is linearly dependent in V , then we can kill o↵ one vector from it and
still have the span’s be equal.

Theorem 3.11. In a finite-dimensional v.s., the length of every linearly independent list of vectors
is less than or equal to the length of every spanning list of vectors. We can get a basis from any span-
ning list by removing vectors, and we can get a basis from a linearly independent list by adding vectors.
Any two bases of a finite-dimensional v.s. V have the same length; the length is called the dimension
of V .

It should be clear that any subspace has dimension less than or equal to its ambient space. The measure
of how much the di↵erence is can be seen from the following:

Theorem 3.12. If U
1

, U
2

are subspaces of a finite-dimensional v.s., then dim(U
1

+ U
2

) = dimU
1

+
dimU

2

�dim(U
1

\U
2

). Also, if V = U
1

, ..., U
m

and dimV = dimU
1

+...+dimU
m

, then V = U
1

�...�U
m

.
Proof. Write down bases for all of them and it’s obvious.

Having been introduced to the basic notions of basis and dimension, we proceed to define the cen-
tral object:

Definition 3.13. A linear transformation T : V ! W is a map that satisfies linearity, namely
T (au+ bv) = aT (u) + bT (v) for a, b 2 F, u, v 2 V . The set of all linear maps T : V ! W is denoted as
L(V,W ).

Is the zero map linear? The identity? Di↵erentiation? Integration?
Note that you can compose linear maps, with nice properties. Namely, if T 2 L(U, V ) and S 2

L(V,W ), then we can get ST 2 L(U,W ) by doing T then S. These compositions are also associative
and distributive.

To talk about linear maps and what they do intelligently, we need to know specific things about them:

Definition 3.14. The kernel, or null space, of T 2 L(V,W ) is the set kerT := {v 2 V : Tv = 0}.
The image, or range, of T is im T = {Tv : v 2 V }.

It should be clear that both the kernel and the range of T are subspaces of V . One of the most
important theorems of linear algebra is known as the rank-nullity theorem:

Theorem 3.15. If V is finite-dimensional and T 2 L(V,W ), then im T is a finite-dimensional sub-
space of W and

dimV = dimkerT + dim im T.

Proof. Write down bases u
1

, ..., u
m

for kerT and extend it to a basis of V by appending w
1

, ..., w
n

.
Then any v 2 V can be written as v =

P
m

i=1

a
i

u
i

+
P

n

i=1

a
i

w
i

. Apply T to get Tv =
P

n

i=1

a
i

T (w
i

). To
show that (Tw

1

, ..., Tw
n

) is linearly independent, suppose 9b
i

2 F :
P

n

i=1

b
i

Tw
i

= 0. Then by linearity
of T , T (

P
n

i=1

b
i

w
i

) = 0 =)
P

n

i=1

b
i

w
i

2 kerT . Since u
1

, ..., u
m

spans kerT , we have
P

b
i

w
i

=
P

c
i

u
i

,
which shows that all the b’s are 0. This shows that Tw

1

, ..., Tw
n

is linearly independent, so im T is of
dimension n as desired. ⌅

We can also note the general structure of linear maps. That is, are they one-to-one, onto, or both?
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If they are both, then it happens that they are invertible, e.g. 9S : ST = TS = Id. To make this notion
more precise, we introduce the following definitions (which are, by the way, very important):

Theorem 3.16. T is injective if u, v 2 V and Tu = Tv implies u = v. T is surjective if it’s
range is W . T is bijective if it’s both injective and surjective.

Convince yourself that T is injective i↵ kerT = {0}. This is very important outside of linear alge-
bra, and we will use this to a large extent to show that linear maps are injective. It should also be
obvious that T can only be injective when dimV = dimW , and surjective if dimV � dimW . A lin-
ear map is called invertible if there exists an inverse of T , which happens i↵ T is a bijection (prove
this). Any two vector spaces linked by an invertible map is called isomorphism, and the vector space
isomorphism is given by the bijective map.

One applicable thing about linear maps is that is allows for the complexification of a real vector
space, which is important in di↵erential geometry:

Theorem 3.17. A real vector space with complex structure is a complex vector space.
Proof. Let V be a real vector space with dimV = 2n and J : V ! V and J2 = �Id. Define

multiplication C ⇥ V ! V by complex scalars by (x + iy)v = xv + yJv for v 2 V and x, y 2 R. Then,
with respect to this multiplication, (V, J) defines a complex vector space of dimension n (check this). ⌅

Anyways, remember what matrices are? If you only thought of them as numbers in an array, you’ll
be surprised to see that they encode the action of a linear transformation.

Definition 3.18. Let T 2 L(V,W ), and suppose the v
1

, ..., v
n

is a basis of V and w
1

, ..., w
n

is a
basis of W . Then for each k = 1, ..., n, we can write Tv

k

= a
1k

w
1

+ ... + a
mk

w
m

where a
j

k 2 F for
j = 1, ...,m; these scalars complete determine T . The m ⇥ n matrix formed by the a’s is called the
matrix of T w.r.t. (v

1

, ..., v
n

) and (w
1

, ..., w
n

) and is denoted M(T, (v
1

, ..., v
n

), (w
1

, ..., w
n

)), or just
M(T ).

With regards to this definition, everything that you know about matrices comes from the properties
of linear maps (or maybe it should be the other way around). In particular, M(T +S) = M(T )+M(S),
M(cT ) = cM(T ), M(Tv) = M(T )M(v), etc. I will also assume that you know what diagonal matricces,
upper-triangular matrices, etc. are (they are exactly what they sound like). We will return to discuss
the trace and determinant of a matrix later, but first we’ll divert our attention to eigenstu↵. Eigenstu↵
help us, in a way, understand the structure of operators. We’ll state what they are and a few theorems
about the without proof (honestly, I get a bit bored while talking about them).

Definition 3.19. For T 2 L(V, V ) = L(V ) and U a subspace of V , U is invariant under T if
u 2 U =) Tu 2 U . On a separate note, � 2 F is called an eigenvalue of T 2 L(V ) if 9u 2 V : Tu = �u,
where u is the eigenvector.

Theorem 3.20. Let T 2 L(V ), and suppose �
1

, ...,�
m

are distinct eigenvalues of T and v
1

, ..., v
m

are corresponding nonzero eigenvectors. Then (v
1

, ..., v
m

) is linearly independent. Also, each operator
on V has at most dimV distinct eigenvalues.

Theorem 3.21. Every operator on a finite-dimensional, nonzero, real v.s. has an invariant subspace of
dimension 1 or 2. Every operator on an odd-dimensional real v.s. has an eigenvalue.

I’ll assume that most of you have dealt with eigenstu↵ before, and I don’t want to make the linear
algebra section too long, so I will skip to inner products. In a vector space V , we can define what
length and angles mean, which helps us understand the structure of vector spaces more.

Definition 3.22. An inner product on V is h·, ·i : V ⇥ V ! F :
1. hv, vi � 0 for all v 2 V .
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2. hv, vi = 0 i↵ v = 0.
3. hu+ v, wi = hu,wi+ hv, wi for all u, v, w 2 V .
4. hav, wi = ahv, wi for all a 2 F, v, w 2 V .
5. hv, wi = hw, vi for all v, w 2 V (or hv, wi = hw, vi if we’re dealing with a real v.s. V .

Also, an inner product space is a v.s. V endowed with an inner product. The norm of v 2 V ,
denoted ||v||, is given by ||v|| =

p
hv, vi. Two vectors are orthogonal if hu, vi = 0.

Theorem 3.23. (Pythagorean theorem) If u, v 2 V are orthogonal, then ||u+ v||2 = ||u||2 + ||v||2.
Proof. Trivial. ⌅

Theorem 3.24. (Cauchy-Schwarz inequality) If u, v 2 V , then |hu, vi|  ||u||||v||, and equality holds i↵
one of u, v is a scalar multiple of the other.

Proof. Assume v 6= 0, and consider the orthogonal decomposition

u =
hu, vi
||v||2 v + w,

where w is orthogonal to v. Using the Pythagorean theorem, we have

||u||2 =

����

����
hu, vi
||v||2 v

����

����
2

+ ||w||2 =
|hu, vi|2

||v||2 + ||w||2 � |hu, vi|2

||v||2 .

That equality holds i↵ one of u, v is a scalar multiple of the other is obvious. ⌅

Theorem 3.25. (Triangle inequality) If u, v 2 V , then ||u + v||  ||u|| + ||v||, and equality holds
i↵ one of u, v is a nonnegative multiple of the other.

Proof. Use Cauchy-Schwarz. ⌅

These last two inequalities are among the most important in all of mathematics, so remember them
well! The notion of orthogonality is also very important, since decomposing a vector into orthogonal
bases is easy.

Definition 3.26. A list of vectors is orthonormal if the vectors are pairwise orthogonal and each
vector has norm 1. An orthonormal basis is a basis that’s, you guessed it, orthonormal.

It should be clear that every orthonormal list of vectors is also linearly independent. Also, if (e
1

, ..., e
n

)
is an orthonormal basis of V , then the orthogonal decomposition of v 2 V is given by v = hv, e

1

ie
1

+ ...+
hv, e

n

i, and ||v||2 = |hv, e
1

i|2+...|hv, e
n

i|2. We can turn any linearly independent list into an orthonormal
list with the same span as the original list using the Gram-Schmidt procedure: namely, let

e
j

=
v
j

� hv
j

ie
1

� ...� hv
j

, e
j�1

ie
j�1

||v
j

� hv
j

, e
1

ie
1

� ...� hv
j

, e
j�1

ie
j�1

|| ,

and convince yourself that (e
1

, ..., e
j

) is an orthonormal list. It follows that every finite-dimensional
inner product space has an orthonormal basis.

We can also define the orthogonal subspace to a subspace U as U? := {v 2 V : hv, ui = 0 8u 2 U}.
Notice that (U?)? = U , and if U is a subspace of V , then V = U � U?. Let ⇡

U

: V ! U denote or-
thogonal projection w.r.t. the subspace U ; then ⇡

U

(v) is the closest point in U to v, and is given by
⇡
U

(v) = hv, e
1

ie
1

+ ...+ hv, e
m

ie
m

. This fact has many applications in minimization problems.

Example 3.27. [Axler 114] Let’s find a polynomial u with real coe�cients and degree at most 5 on
[�⇡,⇡] that approximates sinx as well as possible, in the sense that

R
⇡

�⇡

| sinx� u(x)|2dx is minimized.
Let C[�⇡,⇡] denote the real v.s. of continuous real-valued functions on [�⇡,⇡] with inner product

hf, gi =
Z

⇡

�⇡

f(x)g(x)dx,
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let v 2 C[�⇡,⇡] be v(x) = sinx, and let U denote the subspace of C[�⇡,⇡] consisting of polynomials
with real coe�cients and degree  5. Then we should find u 2 U : min ||v � u|| is achieved. To do this,
use the Gram-Schmidt procedure to get an orthonormal basis, then use the inner product given by hf, gi
above to compute ⇡

U

(v). The answer is ⇡
U

(v) = 0.987862x� 0.155271x3 + 0.00564312x5.

Orthogonal subspaces show up everywhere (like symplectic geometry), so keep them in mind! For
the rest of this section, we deal primarily with two concepts: the notion of a functional, and properties
of matrices.

Definition 3.28. A linear functional on V is a linear map from V to F . The space of all linear
functionals is called the dual space of V and is denoted V ⇤. For T 2 L(V,W ), the adjoint of T .
denoted T ⇤, is the map from W to V such that for w 2 W , T ⇤w is the unique vector in V such that
hTv,wi = hv, T ⇤wi for all 2 V . T 2 L(V ) is self-adjoint if T = T ⇤.

For more information about the adjoint, google it. You should also try to prove properties about
the adjoint on your own (I want to move on to other material), but one important theorem involving
adjoints that I will mention is the spectral theorem, stated here without proof:

Theorem 3.29. (Real spectral theorem) Let V be a real inner-product space and T 2 L(V ). Then V
has an orthonormal basis consisting of eigenvectors of T i↵ T is self-adjoint.

Let’s return to matrices, which will close out this section. Recall that, while defining matrices, we
had to specify a basis. The following change-of-basis theorem assures us that we can switch between
bases:

Theorem 3.30. Suppose T 2 L(V ) and (u
1

, ..., u
n

) and (v
1

, ..., v
n

) are bases of V . IfA = M(I, (u
1

, ..., u
n

), (v
1

, ..., v
n

)),
then

M(T, (u
1

, ..., u
n

)) = A�1M(T, (v
1

, ..., v
n

))A.

With this and the fact that trace(AB) = trace(BA), you should prove that the trace of any matrix,
defined as the sum of the diagonal entries w.r.t. any choice of basis, is well-defined. We will not get into
the properties of the trace here, and instead talk about determinants.

Definition 3.31. The determinant of a matrix is an alternating multilinear function of the columns,
and for the n⇥ n matrix A = (a

i,j

) is given by

detA =
X

(m1,...,mn)2perm n

�(m
1

, ...,m
n

)a
m1,1

...a
mn,n.

For our purposes, we will define the deteminant of a linear operator to be the determinant of its matrix
representation. Why we introduced the notion of determinant can be seen from the following theorem:

Theorem 3.31. A linear map is invertible i↵ its determinant is zero.
Proof. Left to the reader.

The determinant transforms volumes in Rn:

Theorem 3.32. If T 2 L(Rn), then volume T (⌦) = | detT |(volume ⌦) for ⌦ ⇢ Rn.

This wraps up our introductory section on linear algebra. Some cool things about linear algebra that we
did not get to (and you should look up): applications of linear algebra to Google’s PageRank algorithm,
the canonical isomorphism between a vector space and its double dual, the characteristic polynomial,
Jordan form,.... Let’s move on to more fun stu↵!
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4 Real analysis

The tools for linear algebra we developed carry nicely over to Rn, and the study of real-analytic functions
is called real analysis. To get started, we need to know the topology of Rn. The following terms that
I will use are basically what you think they mean, so in the interest of space I will just throw them at
you:

The topology of Rn, lim
x!a

f(x) = L, continuity of functions f : Rn ! Rn, countable subsets of
Rn (A ✓ Rn is countable if it is finite or countably infinite.), the ball of radius r around a given by
B

r

(a) := {x 2 Rn|||x� a|| < r}, open sets of Rn (A ✓ Rn is open i↵ all points of A are interior points),
B ✓ Rn is closed if Rn �B is open or the set of accumulation points acc(B) ✓ B.

In other words, we need to what sets are open in a space (Rn), which defines a topology. The other
definitions involve something called epsilons and deltas, which pervade real analysis. Epsilons are a
quantity so small that it’s identically zero.

Definition 4.1. A function f : Rn ! Rm is said to be continuous at x = c if for �, ✏ > 0 and
|x� c| < �, |f(x)� f(c)| < ✏.

Definition 4.2. Given an inner product space X, a subset A ✓ X is open in X if it can be cov-
ered by open balls in X. A ✓ X is closed if its complement X�A is open, or equivalently, if it contains
the set of all its accumulation points.

Definition 4.3. A subset A ✓ X is compact if every sequence has a convergent subsequence. Equiv-
alently, if we take X = Rn, then A is compact i↵ it is closed and bounded, meaning that it can be
contained in a ball of finite radius.

The equivalence of the definitions of compact subset follows from a very useful theorem in elemen-
tary real analysis, namely the Bolzano-Weierstrass theorem:

Theorem 4.4. (Bolzano-Weierstrass Theorem) If A ✓ Rn contains infinitely many points and is
bounded, then 9 an accumulation point of A in Rn.

Thus, TFAE criteria for compactness for A ✓ Rn.
1. A is compact.
2. A is closed and bounded.
3. Every infinite subset of A has an accumulation point in A.

Now consider extending these notions into generality, that is, into metric spaces. Metric spaces provide
the backbone for doing calculus:

Definition 4.5. Let X be a set. X is a metric space if there exists a metric. d : X ⇥ X ! R is
a metric if it satisfies the following:

1. d(p, q) > 0 if p 6= q, and d(p, p) = 0.
2. d(p, q) = d(q, p) 8p, q 2 X.
3. d(p, q)  d(p, r) + d(r, q) 8p, q, r 2 X (this is the Triangle Inequality).
4. (on Rn) d(x, y) = ||x� y|| =

p
hx� y, x� yi.

With this vocabulary of the metric, we can talk about neighborhoods (open balls) N
r

(p) = {x 2
X|d(x, p) < r}, B

r

(a) or B
a

(r), accumulation points, isolated points, interior points, open sets, closed
sets, compactness, etc. Let’s define more vocabulary:

Theorem 4.6. E ✓ X is dense if every point of X is a limit point of E or is a point of E (or
both). Q ✓ R is dense, but Z ✓ R is not.

Theorem 4.7. If X is a metric space and E ✓ X, then

8
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1. Ē is closed.
2. E = Ē i↵ E is closed.
3. Ē ✓ F for all F ✓ X closed s.t. E ✓ F . Ē is the smallest closed subset containing E.

Definition 4.8. We also went over the notion of least upper bound of R: for A ✓ R a nonempty subset,
if A is bounded then 9 least upper bound called supA (supremum). (Dedekind completeness). inf A is
called the greatest lower bound of A.

For X a metric space and Y ✓ X also a metric space, we consider E ✓ Y ✓ X. We have two
metric spaces potentially conflicting each other: is E ✓ Y open? Is E ✓ X open? Consider X = R2,
Y = [0, 1], E = [0, 1/2). E and Y are not open in X. Convince yourself that E is open in Y by going
over the definition of neighborhood. E ✓ Y is open in Y i↵ every point of E is an interior point relative
to Y .

Definition 4.9. Let’s introduce the general definition of compactness. A subset K ✓ X is com-
pact if every open cover of K admits a finite subcover.

Theorem 4.10. Suppose K ✓ Y ✓ X. K is compact relative to X i↵ K is compact relative to
Y .

Proof. Suppose K is a compact set relative to X. We must show that any open (relative to Y )
cover of K admits a finite subcover. Take an open (relative Y ) cover of K {V

↵

}, V
↵

open relative to Y ,
K ✓ [

↵

V
↵

from the theorem above. There exists open sets relative to X, which we denote as G
↵

, such
that V

↵

= Y \G
↵

. Then K ✓ [
↵

(G
↵

\Y ) ✓ [
↵

G
↵

. K is compact relative to X ) 9 finitely many G
↵

’s
such that K ✓ G

↵1 [ ...[G
↵n ) Y \K ✓ (G

↵1 [ ...[G
↵n)\Y ) K \Y ✓ (G

↵1 \Y )[ ...[ (G
↵n \Y ).

So this is finite subcover. ⌅

Theorem 4.11. Compact subsets of metric spaces are closed. Closed subsets of compact sets are
compact. If {K

↵

} is a collection of compact subsets of a metric space X such that \ of every finite
subcollection is nonempty, then \

↵

K
↵

6= ;. This is like the Cantor Intersection Theorem for finite
metric spaces. If E is an inf. subset of a compact set K, then E has a limit point in K. This is similar
to the Bolzano-Weierstrass Theorem.

We now turn our attention to the Cantor Set, which we construct as follows. Consider the interval
E

0

= [0, 1], and remove the middle-thirds open interval (1/3, 2/3) to get E
1

. Repeat this process for
each of the resulting intervals E

1

, E
2

, ... ad infinitum. This is the dyadic Cantor Set C ✓ [0, 1]. Also,
...E

2

✓ E
1

✓ E
0

, and \1
k=1

E
k

= C. There’s many interesting properties about this set: it’s closed and
bounded, compact, “perfect,” contains no interior points, and is totally disconnected....

Anyways, to go back to the main point, we were talking about topology. Topology examines shapes
as mathematical objects. For X a space and T consisting of all open sets of X, we can define (X, T ) to
be a topological space.

To talk about shapes, we wanted to talk about notions of bounded, countable, compact, and connected.
Let’s move on to connectedness. You already have an intuition for what ”connected” means, so how do
we formalize it? In R, connected subsets include (a, b), or (�1,1).

Definition 4.12. E ✓ X is connected i↵ E is not disconnected. For A,B ✓ X, A and B are
separated if A \ B̄ = ; and Ā \ B = ;. The empty set is separated from every set. We also cannot
separate anything from Q in R since Q̄ = R. A set E ✓ X is disconnected if E = A[B, where A and
B are nonempty and separated.

Is the union of connected subsets connected? Not necessarily. Is the intersection of connected sub-
sets connected? Not necessarily: consider two ”banana-shaped” objects that intersect at two points.
Let’s move onto connected subsets of R. The intervals should be connected:

9
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Theorem 4.13. E ✓ R is connected i↵ it satisfies the following property: if x, y 2 E and x < z < y,
then z 2 E. A set like (a, c) [ (c, b) violates this.

Proof. (Quick sketch) First we show that if E does not satisfy the above property, then E is
disconnected. Suppose we have x, y 2 E; we know 9z : x < z < y and z /2 E. Let’s consider the
sets (�1, z) \E = A \E and (z,1) \E = B \E. Then E = A

z

[B
z

. Are these guys separated? Yes
(why?). Are they nonempty? Yes (why?). So E is disconnected.

Now we want to show that E disconnected implies that the properties above are violated. By as-
sumtion, 9 nonempty, separated sets A and B such that E = A [ B. How do we find x, y, z such that
the properties are violated? Let z = sup([x, y] \ A). So x  z < y. z 2 Ā or z /2 B. If z /2 A, we have
a strict inequality above and we’re done. If z 2 A, then z /2 B̄ because A and B are separated, which
implies that 9r > 0 : B

r

(z) contains no points of B. Choose z
1

: z
1

> z, z
1

/2 B̄. Claim: x < z
1

< y,
z
1

/2 E violates the assumption. ⌅

Let’s not get bogged down by metric spaces and turn to sequences and series, which as you know
from AP Calc BC are very important in calculus. We want to generalize them:

Definition 4.14. A sequence {p
n

} is a mapping seq: N ! X : n 2 N 7! p
n

2 X.

Definition 4.15. A sequence {p
n

} in a metric space X is said to converge if 9p 2 X with the
following property: 8✏ > 0, 9N > 0 : n � N ) d(p

n

, p) < ✏. If a sequence does not converge, then it
diverges.

Theorem 4.16. Let {p
n

} be a sequence in a metric space X. Then
1. p

n

! p i↵ every neighborhood of p contains all but finitely many p
n

’s.
2. If p, p0 2 X nd p

n

! p, p
n

! p0, then p = p0.
3. If p

n

converges, then {p
n

} ✓ X is bounded.
4. If E ✓ X and p 2 acc(E), then 9 a sequence {p

n

} ✓ E s.t. p
n

! p.

Proof. (Sketch) (1) Suppose p
n

! p. Let U be a (open) neighborhood of p. 9✏ > 0 : B
✏

(p) = {x 2
X|d(x, p) < ✏} ✓ U . Because p

n

! p, 9N : 8n � N, d(p
n

, p) < ✏. Thus the neighborhood does not
contain {p

N

, p
N+1

, ...}.
Now suppose every neighborhood of p contains a tail. Show {p

n

} ! p. Let ✏ > 0 be given. By
hypothesis, B

✏

(p) contains a tail, that is 9N : 8n � N, p
n

2 B
✏

(p), i.e. 8n � N , d(p
n

, p) < ✏.
(2) Given ✏ > 0, 9N : 8n � N, d(p, p

n

) < ✏/2, 9M : 8n � M,d(p
n

, p0) < ✏. Thus 8n � max(N,M),
d(p, p0)  d(p

n

, p) + d(p
n

, p0) by the Triangle Inequality.
(3) We have p

n

! p. Choose r > 0. By part (1), B
r

(p) contains a tail.
(4) Consider B

rn(p), with r
n

:= {1/n}. ⌅

Definition 4.17. Given a sequence {p
n

}, n 7! p
n

2 X, n 2 N, let {n
k

} be a sequence of positive
integers s.t. n

1

< n
2

< n
3

< .... Then the ’new’ sequence {p
ni} is called a subsequence of {p

n

}. If a
subsequence {p

ni} converges, then its limit is called a subsequential limit.

Example 4.18. Consider the sequence defined by p
n

= 1/n, n = 1, 2, .... The first few terms of the
sequence is 1, 1/2, 1/3, .... Now consider the subsequence where n = 1, 3, 5, .... The first few terms of the
subsequence is 1, 1/3, 1/5, ....

Proposition 4.19. p
n

! p i↵ every subsequence converges to p.
Proof. Suppose p

n

! p, and consider a subsequence {p
ni}. Since p

n

! p, 8✏ > 0, 9N : d(p
n

, p) < ✏.
Since {p

ni} is a subsequence, 9M : 8i � M,d(p
ni , p) < ✏. ⌅

Note that, if {p
n

} is a sequence in a compact metric space, then 9 a convergent subsequence. Also,
every bounded sequence in Rn contains a converging subsequence.

Theorem 4.20. The set of all subsequential limits of a given {p
n

} forms a closed subset of X. Also,
suppose p

n

! p in X. Then 8✏ > 0, 9N : 8n,m � N , d(p
n

, p
m

) < ✏.

10
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Definition 4.21. A sequence {p
n

} 2 X is Cauchy if 8✏ > 0, 9N : 8n,m � N, d(p
n

, p
m

) < ✏. (Why
can’t we replace m with n + 1? Consider the harmonic series.) All convergent sequences are Cauchy
(why?).

Consider the sequence 1 + 1

n!

for n = 1, 2, .... This should convince you that Q admits Cauchy se-
quences with no limits.

Theorem 4.22. The following are true:
1. In any metric space X, convergence implies Cauchy.
2. In any compact X, and if {p

n

} is Cauchy, then p
n

converges in X.
3. In Rn, every Cauchy sequence converges.

Definition 4.23. The metric space X is said to be complete if every Cauchy sequence converges. Ex-
amples are Rn, compact metric spaces; non-examples are Q, R�Q,....

Now let’s talk about upper and lower limits (which we call limit superior and limit inferior). Let
{s

n

} be a sequence of real numbers, and let E ✓ R [ {±1} be a set of all subsequential limits of {s
n

}.

Definition 4.24. The upper limit of {s
n

}, s⇤ := supE, and the lower limit s⇤ := inf E. A sequence
{s

n

} converges i↵ s⇤ = s⇤ = s.

Definition 4.25. s
n

=
P

n

k=1

a
k

is a series, and
P

a
k

converges if {s
n

} converges.

Cauchy criterion for convergence of series. {s
n

} converges i↵ 8✏ > 0, 9N : 8n,m � N, d(S
n

, S
m

) =
|s

n

� s
m

| < ✏. It {s
n

} converges, it is necessary condition that, taking m = n + 1, |a
n+1

| < ✏ and
lim

n!1 a
n

= 0. This is not su�cient; an example would be
P

1/n.

Theorem 4.26. (Partial sums convergence) A series of nonnegative terms converges i↵ sequence of
partial sums {s

n

} is bounded.

Theorem 4.27. (Telescoping convergence) Let {a
n

}, {b
N

} be two sequences of real numbers s.t.
a
n

= b
n+1

� b
n

(sequence of successive di↵erences). Then
P

a
n

converges i↵ lim
n!1 b

n

exists, in
which case

P
a
n

= lim
n!1 b

n

� b
1

.

Note that we can also prove the comparison test, the power test, the root test, the ratio test, etc.
from calculus. Something that we can do with series is to define some very useful numbers:

Definition 4.28. e :=
P1

n=0

1/n!. Prove that this series converges: s
n

< 1+1+1/2+1/4+...+1/2n�1 <
3, so s

n

! 3 and {s
n

} converges.

How fast does s
n

converge? e � s
n

= 1

(n+1)!

+ 1

(n+2)!

+ ... < 1

(n+1)!

(1 + 1

n+1

+ 1

(n+1)

2 + ...) = 1

n!n

.
So it converges really fast. We also prove something that you all should know how to prove:

Theorem 4.29. e is irrational.
Proof. Suppose not; let e = p/q for p and q reduced. 0 < e � s

q

< 1

q!q

) 0 < q!(e � s
q

) < 1/q.

q!(e� s
q

) = q!e� q!s
q

= (q� 1)!p� q!(1+ 1+1/2!+ ...+1/q!). This is a di↵erence of integers, but there
are no integers between 0 and 1/q, so we have a contradiction. Remark: It’s rather hard to prove that
⇡ is irrational, or that e is transcendental.

Consider
P1

n=0

c
n

(z � z
0

)n, c
n

, z
1

, z
0

2 C. For which z 2 C does this series converge, and what does it
converge to? There exists a disk in C, called the disk of convergence with radius R, in which the series
converges.

11
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Theorem 4.30. Given the power series
P1

n=0

a(z � z
0

)n, set ↵ = lim
n!1 sup |c

n

|1/n and set R = 1

↵

.
Then series converges if |z � z

0

| < R and diverges if |z � z
0

| > R.
Proof. Using the root test, we have lim

n!1 sup |a
n

|1/n = lim sup(|c
n

||z�z
0

|n)1/n = |z�z
0

| lim
n!1 |c

n

|1/n.
Setting this as ↵, by the root test we know that |z� z

0

| < 1/↵ = R implies convergence, while > implies
divergence.

Example 4.31.
1.
P1

n=1

nzn > 1 at any point of the unit circle: if z is on the unit circle, then by definition |z| = 1,
but then |nzn| = n and n ! 1. So

P1
n=1

nzn > 1 at any point of the unit circle because the
terms do not approach 0 (in particular, it fails the divergence test).

2.
P1

n=1

z

n

n

2 < 1 at every point of the unit circle: we show that the series converges by showing
that it converges absolutely. As above, |z| = 1, so we can use the comparison test to writeP1

n=1

|zn|
n

2 
P1

n=1

1

n

2 < 1. Thus
P1

n=1

z

n

n

2 < 1, as desired.

3.
P1

n=1

z

n

n

converges conditionally at every point of the unit circle, except at z = 1. (Try proving
this using summation by parts.) This goes into alternating series.

Definition 4.32.
P

a
n

converges absolutely if
P

|a
n

| converges. Prove, using the comparison test, that
if
P

a
n

converges absolutely, then
P

a
n

converges.

Theorem 4.33. (Alternating Series Test, not in Rudin) Let
P1

n=1

(�1)n+1a
n

, a
n

� 0, and {a
n

}
decreasing. Then

P1
n=1

(�1)n+1a
n

converges.

Proof. Consider partial sums s
N

=
P

N

n=1

a
n

. All s
n

� 0 by induction, and we want to show that
s
n

! 0 as n ! 1. Consider s
2n

, s
2n+1

, .... s
2n+2

� s
2n

, so the even partial sums are increasing. By a
similar argument, the odd partial sums are decreasing. Then the even partials are bounded above by a,
and odd partials are bounded below by 0. We must show that both subsequences converge to the same
number, but the even partials tend towards 0 because a

n

� 0 and a
n

is decreasing. ⌅

Let’s move on to continuity. f is continuous at a if lim
x!a

f(x) = f(a), and lim
x!a

f(x) = L means
8✏ > 0, 9� > 0 : 0 < |x� a| < � ) |f(x)� L| < ✏. How do we generalize this to metric spaces? a should
be an accumulation point of E in order to talk about limits, and absolute values should be replaced by
d
x

and d
y

.

Definition 4.34. (Uniformly continuous) Intuitively, this means that we don’t have to let � vary
depending on our point in the traditional definition of continuity. As an example, 1/x on (0, 1) is not
uniformly continuous, but

p
x is.

Theorem 4.35. Let f : X ! Y be continuous and X compact. Then f is uniformly continuous
on X. Also, if f : X ! Y , X and Y metric spaces, X compact, f continuous and bijective, then f is a
homeomorphism.

There are many theorems about uniform convergence that we won’t get to, but be assured, they are
very useful in all of mathematics. We now have all the machinery to define what a derivative is.

Definition 4.36. f is di↵erentiable if f 0 exists, and f 0 exists if the limit

Theorem 4.37. Let f be defined on [a, b]. If f is di↵erentiable at x 2 [a, b], then f is continuous
there. Also, suppose f and g are defined on [a, b] and suppose they are both di↵erentiable at x 2 (a, b).
Then (f + g), (f � g), and f/g are di↵erentiable at x.

Theorem 4.38. (Chain rule) Suppose f is continuous on [a, b] and f 0(x) exists at some x 2 [a, b].
Also suppose g defined on some interval I ✓ R and suppose I contains f([a, b]). Suppose that g is
di↵erentiable at f(x) 2 I. Then h(t) = g(f(t)), t 2 [a, b] is di↵erentiable at x and h0(x) = g0(f(x))f 0(x).

12
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Definition 4.39. f : [a, b] ! R has a local max at x 2 [a, b] if 9r > 0 s.t. for all y 2 B
r

(x),
f(y)  f(x). Prove that, if f has a local max at a point x 2 (a, b), and if f 0(x) exists, then necessarily
f 0(x) = 0.

Theorem 4.40. Let f and g be continuous, real-valued, defined on [a, b]. Suppose f and g are di↵er-
entiable on (a, b). Then 9 a point x 2 (a, b) at which

(f(b)� f(a))g0(x) = (g(b)� g(a))f 0(x).

The standard mean value theorem is a corollary.

Theorem 4.41. If f is di↵erentiable on (a, b) then
1. f 0(x) � 0 8x 2 (a, b) ) f is monotonically increasing.
2. f 0(x)  0 8x 2 (a, b) ) f is monotonically decreasing.
3. f 0(x) = 0 8x 2 (a, b) ) f is constant.

Proof. Use the MVT. ⌅

Theorem 4.42. If f : [a, b] ! R di↵erentiable and x 2 (f 0(a), f 0(b)), then 9x 2 (a, b) s.t. f 0(x) = x.
(IVT for derivatives) Keep in mind that f 0 may not be continuous.

Theorem 4.43. (L’Hopital’s rule) Suppose f and g are real-valued functions di↵erentiable on (a, b) and

suppose g0(x) = 0 for all x 2 (a, b), �1  a < b  1. Suppose f

0
(x)

g

0
(x)

! A 2 R [ {±1} as x ! a.

Case I: If f(x) ! 0 and g(x) ! 0 as x ! a OR
Case II: If g(x) ! 1 as x ! a

Then f(x)

g(x)

! A as x ! a.
Proof. Suppose the hypothesis in case I holds.
Subcase I: Suppose A 6= 1 ) A 2 R or A = �1. Choose q 2 R s.t. A < q and find r 2 R s.t.

A < r < q. By hypothesis (b/c f 0(x)/g0(x) ! A as x ! a), 9 a neighborhood of a (i.e. 9c 2 (a, b)) s.t.

8x 2 (a, c), f 0(x)/g0(x) < r. We want to show f(x)

g(x)

! A, so to do this we have to find an appropriate

neighborhood of a. The MVT says 9t 2 (x, y) :

(f(x)� f(y))g0(t) = (g(x)� g(y))f 0(t) ) f(x)� f(t)

g(x)� g(y)
=

f 0(t)

g0(t)
< r

for t 2 (x, y). Taking x ! a gives f(y)

g(y)

 r.

Theorem 4.44. (Taylor’s theorem) Suppose f is a real valued function of [a, b]: f : [a, b] ! R.
Suppose n 2 Z+ and suppose f (n�1) is continuous on [a, b]. Suppose f (n) exists for all t 2 (a, b). Let
↵,� 2 [a, b], ↵ 6= �, and define

P
n�1

(t) =
n�1X

k=0

f (k)(↵)

k!
(t� ↵)k

(of degree n� 1). Then 9 a point x 2 (↵,�) : f(�) = P
n�1

(�) + f

(n)
(x)

n!

(� � ↵)n. Check that this makes
sense for the cases n = 1 (MVT), etc.

Let’s take a detour to vector-valued functions f : [a, b] ! Rk, f = (f
1

, ..., f
k

). A lot of the same
properties applies; also f is di↵erentiable at x 2 (a, b) i↵ f

i

is di↵erentiable at x. There are, however,
some counter-examples to L’Hopital’s Rule f : [a, b] ! C ⇠= R2 (can you provide one?).

Theorem 4.45. Suppose f : [a, b] ! Rk and f is di↵erentiable in (a, b). Then 9x 2 (a, b) :
||f(b)� f(a)||  (b� a)||f 0(x)||. This is not the MVT (why?).

We should also make clear what we mean by derivatives in multivalued function:

13
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Definition 4.46. Let v = (v
1

, ..., v
n

) be a vector; then the directional derivative of f(x) is given

by D
v

f(x) = lim
h!0

f(x+hv)�f(x)

h

. The i-th partial derivative is the directional derivative w.r.t. the
i-th standard basis vector. The Jacobian matrix for f : Rn ! Rm is the n⇥m matrix of first partials.

We will fill in the details on multivariable derivatives and Jacobians as we go. Let’s change gears
to integration, which we define via the Riemann-Stieltjes integral. In particular, let P be a partition
of the domain of f , and use upper and lower Darboux sums to define the Riemann-Stieltjes integral.
We defined the upper and lower sums by U(P, f,↵) =

P
n

i=1

M
i

�↵
i

and L(P, f,↵) =
P

n

i=1

m
i

�↵
i

. You
should look up the definitions of Riemann-integrable yourself, but they’r basically what you think they
are.

Note that if f 2 R (Riemann-integrable), then changing value of f at one points does not change
the integral (prove this). A su�cient condition of Riemann-integrability is that f is continuous on
[a, b]. We will skip over the formalities of integration in the interest of time (in order to make room for a
wider variety of concepts later). Anyways, lets move on to FTC, in the context of Riemann integrals only.

Theorem 4.47. (Fundamental Theorem of Calculus) Let f 2 R on [a, b]. For x 2 [a, b] define
F (x) :=

R
x

a

f(t)dt. Then F is continuous on [a, b], and if f is continuous at some x
0

2 [a, b], then
F is di↵erentiable at x

0

and F 0(x
0

) = f(x
0

).
Proof. Since f 2 R, f must be bounded. |f(t)|  M 8t 2 [a, b]. If a  x < y  b, then

|F (x) � F (y)| = |
R
y

x

f(t)dt|  M(y � x). So 8x, y 2 [a, b], |F (x) � F (y)|  M(y � x). Thus F is
uniformly continuous on [a, b].

Now suppose f is continuous at x
0

. Let ✏ > 0 be given. Then 9� > 0 : |x
0

�t| < � ) |f(x
0

)�f(t)| < ✏.
WTS: F 0(x

0

) exists and F 0(x
0

) = f(x
0

). Observe that

����
F (t)� F (s)

t� s
� f(x

0

)

���� =

�����

R
t

s

f(u)du

(t� s)
� f(x

0

)(t� s)

(t� s)

����� =
����

1

t� s

Z
t

s

[f(u)� f(x
0

)]du

���� < ✏

It follows that F 0(x
0

) = f(x
0

). ⌅

Theorem 4.48. (Fundamental Theorem of Calculus) If f 2 R on [a, b] and if 9 a di↵erentiable function

on [a, b] : F 0 = f , then
R
b

a

f(x)dx = F (b)� F (a).

Also look at integration by parts, which you should prove for yourself. Lets move on to the study
of sequences of functions. Set-up: we want to study functions that are real or complex-valued, and let
sequences be maps n 7! (f

n

: X ! R), for X a metric space. For any sequence, we have a power series:

let S
M

(z) =
P

M

n=0

c
n

zn. For each z
0

, we get a sequence of numbers {S
M

(z
0

)}
M=1

, and can ask ourselves
if this converges (which is the same as asking if z

0

is in the disc of covergence). We can define a new
function that sends z

0

to the number it converges to, y
0

; this is just like writing ex =
P1

n=0

x

n

n!

.
So for each x

0

2 X, we get a sequence of numbers {f
n

(x
0

)}|1
n=1

. If this sequence converges, define
a function at the point x

0

to be f(x) = lim
n!0

f
n

(x
0

). So we build a function f : X ! R from the
sequence of functions, and do this point by point in X.

Definition 4.49. Suppose n 7! (f
n

: E ! R) is a sequence of functions defined on a metric space
E. Suppose the sequence of numbers {f(x

0

)}
n=1

converges for all x
0

2 E. Build a new function
f(x

0

) := lim
n!1 f

n

(x
0

) for all x
0

2 E. We say {f
n

}, a sequence of functions, converges on E and
f : E ! R is the limit, or that {f

n

} converges pointwise to the function f on E.

Question: If each f
n

: E ! R has a certain property (e.g. all f
n

are continuous, di↵erentiable, in-
tegrable), to what extent does f : E ! R also have that property?

Answer. g is continuous at a point c means lim
x!c

g(x) = g(c). f(x) := lim
n!1 f

n

(x). Suppose
each f

n

is continuous at c; this means that for all n, lim
x!x

f
n

(x) = f
n

(c). Then lim
x!c

f(x) =
lim

x!c

(lim
n!1 f

n

(x)) 6= lim
n!1 f

n

(c) = f(c) in general, since we can’t just switch the limits. So f is
not continuous in general. Since we can’t switch limits in general, we can’t conclude that f is di↵eren-
tiable or integrable as well.
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Example 4.50. A sequence of functions for which lim
n!1

R
1

0

f
n

(x)dx 6=
R
1

0

lim
n!1 f

n

(x)dx.
Note that this is really a question of whether lim

x!c

(lim
n!1 f

n

(x)) = (lim
n!1(lim

x!c

f
n

(x)),
which generally doesn’t hold as limits do not commute.

So consider the function f
n

(x) = n2x(1�x)n for X = [0, 1]. Check that one limit is 0, and the other
is 1.

Example 4.51. A sequence of di↵erentiable functions {f
n

} with pointwise limit f(x) = 0, but {f 0
n

}
diverges.

Let f
n

(x) = sin(nx)p
n

. The pointwise limit is zero, and clearly its derivative is zero. But the derivative

of the formula above is f 0
n

(x) =
p
n cos(nx), whose limit does not exist as n ! 1.

There’s a stronger notion of convergence that will help regulate f
n

, called uniform convergence (uniform
w.r.t. your domain X).

Definition 4.52. f
n

converges uniformly to f if for all ✏ > 0 there exists N s.t. 8n � N , 8x 2 X,
|f

n

(x)� f(x)| < ✏; e.g. there’s a kind of “epsilon tube” that you can draw around the graph so that for
n large enough, all functions are “trapped” in the tube.

Theorem 4.53. The sequence of functions {f
n

} defined on E converges uniformly on E i↵ 8✏ >
0, 9N : 8n,m � N, |f

n

(x)� f
m

(x)| < ✏ 8x 2 E.

Theorem 4.54. Suppose lim
n!1 f

n

(x) = f(x) 8x 2 E. Let M
n

= sup
x2E

|f
n

(x) � f(x)|. Then
f
n

! f uniformly on E i↵ {M
n

} ! 0.

Theorem 4.55. (Weierstrass M-test for series) Suppose {f
n

} is a sequence of functions defined on
E and suppose |f

n

(x)|  M
n

for all x 2 E. Then
P1

n=1

f
n

(x) converges uniformly on E if
P1

n=1

M
n

converges.

Do we know that
P1

n=1

|f
n

(x)| converges pointwise? Yes, by the comparison test. So the content
of the M-test is that we get uniform convergence.

Does it make sense to take a sequence of numbers {a
n

}1
n=1

and ask if it converges uniformly on E?
Silly question– take functions equal to the constants: f

1

(x) := a
1

, which converges uniformly if it con-
verges.

Theorem 4.56. Assume that f
n

! f uniformly on E. If each f
n

is continuous at a point c 2 E,
then f is also continuous at c.

Proof. Note that if c is not an accumulation point of E, then the theorem holds because functions
are continuous at isolated points. So suppose c is an accumulation point of E. Let ✏ > 0; 9N : 8n �
N, |f

n

(x) � f(x)| < ✏/3 8x 2 E. Since f
N

is continuous at c, 9 a ball B
�

(c), � > 0 s.t. x 2 B
�

(c) )
|f

N

(x)� f
N

(c)| < ✏/3. Apply the triangle inequality lots of times:

|f(x)� f(c)|  |f(x)� f
N

(x)|+ |f
N

(x)� f
N

(c)|+ |f
N

(c)� f(c)| < 3(✏/3) = ✏.

So if x 2 B
�

(c), then |f(x)� f(c)| < ✏. ⌅

Anyways, we see that uniform convergence is strong enough to allow us to interchange limits when
discussing continuity. Note that compactness of the domain does not guarantee uniform convergence,
but it does guarantee uniform continuity.

Theorem 4.57. Suppose K is compact and
(1) {f

n

} is a sequence of functions on K
(2) {f

n

} converges pointwise to a continuous limit function
(3) f

n

(x)  f
n+1

(x) 8x 2 K,n 2 N. Then f
n

! f uniformly on K.
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Proof. Set g
n

:= f
n

� f , and show that g
n

! 0 uniformly. Note g
n

� g
n+1

. Let ✏ > 0, and define a
sequence of sets K

n

:= {x 2 K : g
n

(x) � ✏} = g�1

n

([✏,R)). Note each K
n

is compact.

Recall the definition: we have F a family of functions in the set of bounded, continuous functions
C(X) that map from X ! C, X compact, and norm ||f || = sup |f(x)|, with d(f, g) := ||f � g||. Prove
that, w/r/t to this metric induced by the sup norm, C([a, b]) is complete.

Definition 4.58. A normed linear space which is complete w/r/t metric induced by the norm is
called a Banach space. So C([a, b]) is a Banach space. Moreover, if the norm (giving the metric) comes
from an inner product, then the Banach space is called a Hilbert space. Rn is a Hilbert space.

Theorem 4.59. (Stone-Weierstrass) Every continuous function on [a, b] can be uniformly approximated
by polynomials. (e.g. set of polynomials is dense in set of continuous functions.)

More formally: If f is a continuous complex function on [a, b], then 9 a sequence of polynomials P
n

s.t. lim
n!1 P

n

(x) = f(x); this convergence is uniform on [a, b], and if f is real, then the polynomials
may be taken to be real.

Proof. Use the Bernstein polynomials. First adjust the problem: let [a, b] = [0, 1], and let f(0) =
f(1) = 0. Find these polynomials: let Q

n

(x) = c
n

(1 � x2)n, n 2 N; these have degree 2n because they

are even. Choose c
n

:
R
1

0

Q
n

(x)dx = 1; e.g. c
n

= 1

2

R 1
0 (1�x

2
)

n
dx

(this is like a normalization step). What

can we say about c
n

? We have

Z
1

�1

(1� x2)ndx = 2

Z
1

0

(1� x2)ndx � 2

Z
1/

p
n

0

(1� x2)ndx � 2

Z
1/

p
n

0

(1� nx2)dx =
4

3
p
n
,

since over the domain x 2 [0, 1/
p
n], we have (1� x2)n � (1� nx2). So we have

c
n

Z
1

�1

(1� x2)n >
c
np
n
) c <

p
n.

Now choose � 2 (0, 1]. Then for any x : �  |x|  1, we have Q
n

(x) = c
n

(1 � x2)n 
p
n(1 � �2)n.

This means that Q
n

! 0 uniformly on [�, 1]. Then here are the polynomials that we want: P
n

(x) =R
1

�1

f(x+ t)Q
n

(t)dt, for x 2 [0, 1]. Change variables: let s = x+ t, so that

P
n

(x) =

Z
1

�1

f(x+ t)Q
n

(t)dt =

Z
x+1

x�1

f(s)Q
n

(s� x)ds =

Z
1

0

f(t)Q(t� x)dt,

again for x 2 [0, 1]. f is zero outside [0, 1], which gives the latter equality above. So for our sequence
{P

n

(x)} of polynomials, we must show that P
n

! f uniformly on [0, 1].
Claim: P

n

! f uniformly on [0, 1]. Let ✏ > 0 be given, and find

� > 0 : |y � x| < � ) |f(y)� f(x)| < ✏/2, (1)

which follows by continuity and compactness. Set M := sup
x2[0,1]

|f(x)| < 1. We know from above that

Q
n


p
n(1 � �2)n for �  |x|  1, and Q

n

(x) � 0. Now 8x 2 [0, 1], we have that |
R
1

�1

f(x)Q
n

(t)dt =
f(x) · 1 = f(x), so

|P
n

(x)� f(x)| =
����
Z

1

�1

[f(x+ t)� f(x)]Q
n

(t)dt

���� 
Z

1

�1

|f(x+ t)� f(x)|Q
n

(t)dt,

where the latter inequality follows from the triangle inequality. Split this up into a sum of three integrals:

Z
1

�1

|f(x+ t)� f(x)|Q
n

(t)dt =

Z ��

�1

|f(x+ t)� f(x)|Q
n

(t)dt

| {z }
2M

p
n(1��

2
)

n

+

Z
�

��

|f(x+ t)� f(x)|Q
n

(t)dt

| {z }
✏/2
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+

Z
1

�

|f(x+ t)� f(x)|Q
n

(t)dt

| {z }
2M

p
n(1��

2
)

n

 4M
p
n(1� �)n + ✏/2.

Choose n to make this as small as you want, and since this doesn’t depend on x, we have uniform
convergence. ⌅

Recall the family Q
n

(x) = c
n

(1 � x2)n, which as n ! 1 tends to the Dirac delta function. This
is the “function”

�(x) =

(
+1 x = 0

0 x 6= 0,

which also has the property that
R
�(x)dx = 1.

Finally, let’s jump to multivariable calculus. In particular, let’s go back to derivatives on multival-
ued functions. We want to make sense of a derivative of the function f : Rn ! Rm, so consider how it’s
defined for f restricted to R1 ! R1. To the vector a, f 0 assigns a tangent vector attached to f(a) in
the range. The derivative df

a

is a linear transformation between tangent spaces. To make this more rig-
orous, we’ll need to define tangent space (defined using manifolds in di↵erential topology, e.g. Math 132).

Recall from linear algebra that L(Rn,Rm) is the nm-dimensional v.s. of all linear transformations
from Rn ! Rm. Put a norm on it: for A 2 L(Rn,Rm),

||A|| := sup
|x|1

|Ax|.

Is this actually a norm, and does this norm give a metric we can use? If it is a norm, we can write
down ||A � B|| to be a metric and go from there. Also, if L(Rn,Rm) is a metric space, is it complete?
Compact? We’ll put these questions aside for later.

Note that |A x

|x| | =
|Ax|
|x|  ||A||. Show that ||A|| := sup|x|1

|Ax| = sup|x|=1

|Ax|.

Theorem 4.60. The following are true:
(1) If A 2 L(Rn,Rm), then ||A|| < 1 and A : Rn ! Rm is uniformly continuous.
(2) If A,B 2 L(Rn,Rm) and c 2 R, then ||A+B  ||A||+ ||B|| and ||cA|| = |c| · ||A||.
(3) If A 2 L(Rn,Rm) and B 2 L(Rm,Rk), then ||BA||  ||B|| · ||A||.

Let’s do some calculus. The derivative is lim
h!0

f(x+h)�f(x)

h

, and we can rewrite this as f(x+h)�f(x) =

f 0(x)h + r(h), for lim
h!0

r(h)

h

! 0. This expression is a�ne in h, and in particular f 0(x)h is linear in
h. Define the derivative like this: say f(a, b) ! Rm, (a, b) ✓ R. f 0(X) is the vector y 2 Rm s.t.

f(x+ h)� f(x) = h · y + r(h) and r(h)

h

! 0.

Definition 4.61. Suppose E ✓ Rn is an open set in Rn and f : E ! Rn. Fix x 2 E. If 9 a
linear transformation A 2 L(Rn,Rm) s.t.

lim
h!0

|f(x+ h)� f(x)�Ah|
|h| = 0,

then f is di↵erentiable at x and f 0(x) = A. Show that this is well-defined:

Theorem 4.62. Let f : E ! Rm, and suppose 9A
1

, A
2

satisfying the limit equation for the derivative
above. Then A

1

= A
2

.
Proof. Let B = A

1

�A
2

, and observe that

lim
h!0

|Bh|
|h|  lim

h!0

|f(x+ h)� f(x)�A
1

h|
|h| + lim

h!0

|f(x+ h)� f(x)�A
2

h|
|h| ,

17
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so lim
h!0

|Bh|
h

= 0. Now take a fixed h 6= 0, and consider |B(th)|
h

= t|B(h)|
h

! 0 as t ! 0. So B must be
0, and A

1

= A
2

as desired. ⌅

For a map f : E ! Rm, E an open subset of Rn, f 0(x) exists at x
0

2 E if 9A 2 L(Rn,Rm):

lim
h!0

|f(x+ h)� f(x)�Ah|
|h| = 0,

and f 0(x
0

) = A. The derivative at a point is a linear transformation between tangent spaces.
How do we compute these guys? If T 2 L(Rn,Rm), and f(x) := Tx, x 2 Rn, we claim that f 0(x) = T .

Verify this using the definition: if f 0(x) exists, then

lim
h!0

|T (x+ h)� T (x)�Ah|
|h| = lim

h!0

|T (h)�Ah|
|h| = 0,

and A = T .
In the above case, we relied heavily on linearity, but weird things can happen if we have maps that

“mess up the domain” by squaring, folding, etc. We’ll need some more tools:

Theorem 4.63. (Chain rule) Let f : E ! Rm, E ✓ Rn and x
0

2 E. Suppose f is di↵erentiable
at x

0

. Also let g : U ! Rk, U ✓ Rm and f(E) ✓ U , and suppose g is di↵erentiable at f(x
0

). Then
g � f : E ! Rk is di↵erentiable at x

0

, and (g � f)0(x
0

) = g0(f(x
0

)) · f 0(x
0

).

Definition 4.64. Let’s have an aside on partial derivatives. For f a function as above, we choose
standard bases {e

1

, ..., e
n

} of Rn and {u
1

, ..., u
m

} of Rm. With these bases, we can work the coordinate
functions. For

f(x) =

0

B@
f
1

(x)
...

f
m

(x)

1

CA , f(x) = f
1

(x)u
1

+ ...+ f
m

(x)u
m

,

we can define the partial derivative of f
i

in the direction e
j

as D
j

f
i

(x) = lim
t!0

fi(x+tej)�fi(x)

t

if

the limit exists. We will have the notation @fi

@xj
to denote this partial.

Partial derivatives help compute f 0(x) 2 L(Rn,Rm). Question: how intrinsic are partial derivatives?
We had to choose a basis above, so they depend on coordinates, but one thing to note is that derivatives
do not depend on coordinates.

Theorem 4.65. Let f : E ! Rm, E ✓ Rn. Suppose f is di↵erentiable at x 2 E. Then the par-
tial derivatives (D

j

f
i

)(x) exist and f 0(x)e
j

=
P

m

i=1

((D
j

f
i

)(x))u
i

.

Do we have enough to write down M(f 0(x), {e
1

, ..., e
n

}, {u
1

, ..., u
m

}), the matrix representation of f 0(x)
w.r.t. the basis {e

1

, ..., e
n

} in the domain and the basis {u
1

, ..., u
m

} in the range? Yes. Write this
yourself.

Definition 4.66. For f : E ! R, we define the gradient vector, a vector in Rn, as (rf)(x) =P
n

i=1

(D
i

f)(x)e
i

. This is just a vector of partial derivatives. Also note that the directional derivative

of f in the direction u is lim
t!0

f(x+tu)�f(x)

t

= ((rf)(x) · u) = D
u

f(x). It follows from Cauchy-
Schwarz that ((rf)(x) · u) is maximal for a given f and x when u is parallel to (rf)(x).

Definition 4.67. Let f : E ! Rm, E ✓ Rn be a di↵erentiable mapping. f is continuously dif-
ferentiable in E if f 0 : E ! L(Rn,Rm) is continuous. This definition means 8x 2 E, 8✏ > 0, 9� > 0 :
|x� y| < � ) ||f 0(x)� f 0(y)|| < ✏. Notation: f 2 C(E) ✓ L(Rn,Rm).

Let’s move on to the Inverse and Implicit Function Theorems, the latter of which is perhaps the most
important theorem in analysis and beyond. The inverse function theorem answers the question of when
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a map f is locally invertible (it’s globally invertible if f is injective). Loosely speaking, the derivative
should be invertible; e.g. a continuous di↵erentiable map f : E ! Rm is invertible in a neighborhood of
any point x 2 E at which f 0(x) 2 L(Rn,Rm) is invertible.

Theorem 4.68. (Contraction mapping theorem) Let G : X ! G, X be a metric space, 8x, y 2 X,
d(G(x), G(y))  cd(x, y) where c < 1. Then G is a contraction and there exists at most one fixed point.
Also, if X is complete, then there exists a unique fixed point of a contraction G.

Theorem 4.69. (Inverse function theorem) Suppose f is a C0 mapping f : E ! Rm, E ✓ Rn,
and suppose f 0(a) is invertible. Set b = f(a). Then

(1) 9U, V := f(U) open s.t. f |
U

: U ! V is injective;
(2) g : V ! U , g 2 C0(V ).

To motivate the implicit function theorem, we’ll give a linear algebra version.

Theorem 4.70. (IFT, linear version) Let A 2 L(Rn+m,Rn). If A
x

2 L(Rn) is invertible, then 8k 2 Rm,
9!h 2 Rn : A(h, k) = A

y

(h) +A
y

(k) = 0.
Proof. A(h, k) = A

y

(h) +A
y

(k). Taking h = �(A
x

)�1A
y

K finishes the proof.

Theorem. (IFT) Let f be a C0 mapping, f : E ! Rn s.t. f(a, b) = 0 for some (a, b) 2 E. Set
A := f 0(a, b) and suppose A

x

is invertible. Then
(1) 9 open sets U ✓ Rn+m and W ✓ Rm with (a, b) 2 U and b 2 W having the following property:

to every y 2 W, 9!x : (x, y) 2 U, f(x, y) = 0;
(2) If x := g(y), then g is a C0-mapping of W into Rn, g(b) = a, f(g(y), y) = 0 8y 2 W (the function

g is implicitly defined by this equation) and g0(b) = �(A
x

)�1Ay.

We will move on to another topic without proving the inverse and implicit function theorems, but
keep in mind that they are among the most important theorems in analysis, and are widely used in
topology, geometry, physics, etc.

The is something obvious that remains to be done. We want to generalize the FTC to n dimensions.
The tradeo↵ for this is understanding di↵erential forms. Di↵erential forms du LOVE to be integrated;

e.g.
R
D

du = number. There’s an extra issue of orientation, e.g.
R
b

a

F (t)dt = �
R
a

b

F (t)dt. These are
both integrals of the form

R
[a,b]

, with the extra information of orientation. The determinant of a matrix
will help us out here. First some terminology:

Definition 4.71. A ??-field is attaching a ?? at each point or open set in R2. Examples are vector
fields, form fields, strawberry fields...

Definition 4.72. det : Mat(n, n,R) ! R is the unique function s.t. it is multilinear (linear in columns
of matrix), alternating (�1 comes out through row swap), and normalized (det(I) = 1).

Definition 4.73. A k-form on Rn is a function ' that takes k vectors in Rn and returns a num-
ber denoted '(v

1

, ..., v
k

) so that:
(1) ' is k-linear in columns
(2) ' is alternating ('(v

1

, v
2

, v
3

) = �'(v
2

, v
1

, v
3

))
The number k is called the degree of the form.

Let i
1

, ..., i
k

be any k integers between 1 and n. Then the form dx
i1 ^ ... ^ dx

ik is a function of k
vectors v

1

, ..., v
k

in R that, for the n⇥ k matrix
�
(v

1

) (v
2

) . . . (v
k

),
�

selects k rows from this matrix and assigns them the determinant. Note that 0-forms take 0 vectors and
assigns them a number; e.g. they are functions.
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Geometrically, what is dx
1

^ dx
2

?

dx
1

^ dx
2

0

@

2

4
a
1

a
2

a
3

3

5 ,

2

4
b
1

b
2

b
3

3

5

1

A =

����
a
1

b
1

a
2

b
2

���� = a
1

b
2

� b
1

a
2

.

Recall that the determinant of n vectors dx
1

^ dx
2

^ ... ^ d
xn recalls a signed area. So the geometric

meaning is some “signed volume.”

If we project ~a and ~b onto the (x
1

, x
2

) plane in R3 gives (a
1

a
2

)T + (b
1

b
2

)T , the det

����
a
1

b
1

a
2

b
2

����
gives a signed volume of the parallelogram spanned by (a

1

a
2

)T and (b
1

b
2

)T . dx
1

^ dx
2

should be the
(x

1

, x
2

)-component of the signed area.

Elementary/Basic Forms. Consider the set S of all k-forms on Rn. This is a vector space. But first
consider some other questions: the form dx

1

^...^dx
k

might be redundant; for example, dx
1

^dx
3

^dx
1

=
0. We want to eliminate this redundancy, and count other things like dx

1

^dx
3

and dx
3

^dx
1

(which di↵er
by a negative sign) as identical. So we must consider the most basic forms. The equivalence is as follows:

If {i
1

, ..., i
k

} and {j
1

, ..., j
k

} are equal on sets of positive integers, then dx
j1 ^ ... ^ dx

jk = sgn(�)dx
i1 ^

... ^ dx
ik , where � is the permutation j

1

= i
�(1)

, ..., j
k

= i
�(k)

.

Definition 4.74. An elementary k-form on Rn is an expression of the form dx
i1 ^ ... ^ dx

ik for
1  i

1

< ... < i
k

 n (with indices written in ascending order and all distinct). Denote the elementary
0-form as 1.

Question: can we have a k-form on Rn with k > n, elementary or otherwise?

Definition 4.75. Addition of k-forms: Let ' and  be two k-forms on Rn. Then ('+  )(v
1

, ..., v
k

) :=
'(v

1

, ..., v
k

) +  (v
1

, ..., v
k

). Scalar multiplication of k-forms: (a')(v
1

, ..., v
k

) := a · '(v
1

, ..., v
k

).

Convince yourself that, w.r.t. addition and scalar multiplication defined above, the set Ak(Rn) of
all k-forms on Rn is a vector space.

Theorem 4.76. Every k-form can be uniquely written as

' =
X

1i1<...<ikn

a
i1...ikdxi1 ^ ... ^ dx

ik ,

for a
i1 , ..., aik 2 R, where a

i1,...,ik = '(e
i1 , ..., eik), for (ei1 , ..., eik) being the k standard basis vectors in

Rn. The sum above means that any k-form can be written as a linear combination of basis elements of
Ak(Rn).

Example 4.77. Fix a vector v 2 Rn, and let '
v

(w) = v·w. This is a 1-form, and we should be able to write
this as a linear combination of the elementary 1-forms dx

1

, ..., dx
n

. So '
v

= a
1

dx
1

+a
2

dx
2

+ ...+a
n

dx
n

,
for a

i

= '
v

(e
i

) = v
i

. This says that '
v

is the dot product of v and (dx
1

, dx
2

, ..., dx
n

). The sum in the
theorem above gets a bit more messy with 2-forms.

Remark. dim(Ak(Rn)) =
�
n

k

�
= n!

(n�k)!k!

.

Let’s talk more about the wedge product. What is ^, and how do we get a 2-form dx
1

^ dx
2

from
the wedge operator on dx

1

and dx
2

?

Definition 4.78. The wedge product of the forms ' 2 Ak(Rn) and ! 2 Al(Rn) is ' ^ ! 2 Ak+1(Rn)
defined by

(' ^ !)(v
1

, ..., v
k+l

) :=
X

�2Perm(k,l)

sgn(�) · '(v
�(1)

, ..., v
�(k)

) · !(v
�(k+1)

, ..., v
�(k+l)

),
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where the sum is over all permutations � of the numbers 1, 2, ..., k+ l such that �(1) < �(2) < ... < �(k)
and �(k + 1) < �(k + 2) < ... < �(k + l). Note that � is not required to be globally increasing on
1, 2, ..., k + l, as then � would be the identity.

Properties of the wedge product: Let ' 2 Ak(Rn) and ! 2 Al(Rn).
(1) Distributivity: ' ^ (!

1

+ !
2

) = ' ^ !
1

+ ' ^ !
k

.
(2) Associativity: ('

1

^ '
2

) ^ '
3

= '
1

^ ('
2

^ '
3

).
(3) Skew commutativity: ' ^ ! = (�1)kl! ^ '.

We need areas on which to integrate these forms:

Definition 4.79. The support of a real or complex function f on Rk (Rk ! R or C) is the closure of
the set of all points x 2 Rk at which f(x) 6= 0.

If supp(f) is bounded (and therefore compact) as a subset of Rk, then
R
Rk f :=

R
I

k f , for some
Ik containing the support. We now can integrate continuous functions on Rn with compact support
(Lebesgue theory).

Definition 4.80. The k-simplex Qk := {x 2 Rk|x
1

+ ... + x
k

 1, x
i

� 0}. This places a sum-
ming condition on the positive orthant of Rk.

We’ll need additional tools, that of primitive mappings and partitions of unity:

Theorem 4.81. (Partitions of unity) Suppose K ✓ Rn is compact and {V
↵

} is an open cover of
K. Then 9 functions  

1

..., 
3

2 C(Rn) s.t.
(1) 0   

i

 1
(2) Each  

i

has support in some V
↵

(3) �
1

(x) + ...+ �
3

(x) = 1 8x 2 K.
In particular, we can decompose f into di↵erent pieces according to each  

i

with small support; e.g.
f(x) =

P
3

i=1

f(x) 
i

(x).

Theorem 4.82. (Change of variables) Suppose T is a one-to-one C0 map T : E ! Rk, E ✓ Rk.
Suppose that J

T

(x) 6= 0. If f is a continuous function on Rk whose support is compact and contained
in T (E), then Z

Rk

f(y)dy =

Z

Rk

f(T (x))|J
T

(x)|dx.

We have | | in |J
T

(x)| to fix orientation. Also note that T�1(supp(f)) is indeed compact (so that we can
integrate the RHS) by the inverse function theorem, since T is a closed mapping and continuous.

Note that an a�ne map is T (x) = Ax + b, where A is linear and +b indicates a translation. Let’s

move on to more di↵erential forms. What does the integrand in
R
b

a

f(t)dt mean? It’s a one-form on R,
and not a function. For the ensuing discussion, assume E ✓ Rn is open.

Alright, things are going to get interesting! We want to work with what we call di↵erential forms :

Definition 4.83. A k-surface in E is a C0-mapping � : D ! E, for D compact in Rk. D is called the
parameter domain. Note that we saw something like this before, when we had � : [0, 1] ! R2.

Because of our restricted viewpoint, we restrict to the case when D is either Ik or Qk.

Definition 4.84. A di↵erential form of order k � 1, or a k-form, is a function ! s.t.

! =
X

1i1<...<ikn

b
i1,...,ik(x)dxi1 ^ ... ^ dx

ik ,
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which assigns to each k-surface � in E a number
R
�

! according to the following rule:

Z

�

! =

Z

D

 
X

i

b
i1,...,ik(�(u))

@(x
i1,...,ik)

@(u
1

, ..., u
k

)

!
du,

where D is a parameter domain of �.

Example 4.85. Let D be a cube in R3, (r, ✓,') 2 R3, r 2 [0, 1], ✓ 2 [0,⇡],' 2 [0, 2⇡]. Let � : (r, ✓,') 7!
(r sin ✓ cos', r sin ✓ sin', r cos ✓) = (x, y, z) 2 R3.

Now define !, a 3-form, and compute
R
�

!. ! = dx ^ dy ^ dz, so

Z

�

! =

Z

D

(1)

0

@

������

@x/@r @x/@✓ @x/@'
@y/@r @y/@✓ @y/@'
@z/@r @z/@✓ @z/@'

������

1

A =

Z

I

3

(1)(r2 sin ✓) = 4⇡/3.

If ! is of class C0, then we can talk about d, the exterior derivative operator. If ! is a k-form, then d!
is a k + 1-form. If f is a 0-form, then df is a 1-form and is given by

P
n

i=1

(D
i

f(x))dx
i

. In general, if
! =

P
I

b
I

(x)dx
I

, then d! =
P

I

(db
I

) ^ dx
I

.

Theorem 4.86. If ! is a k-form and � is a m-form of class C0, in E, then
(1) d(! ^ �) = (d!) ^ �+ (�1)k! ^ d�
(2) If ! is of class C00 in E, then d2! = 0.

In math, there are notions of a pullback and a pushforward, both of which come from category the-
ory. If f : x 7! y between two spaces, then attaching a structure at y, we can pullback the local
structure to x. Di↵erential forms can be pulled back. Question: can they be pushed forward?

What does it mean to pullback a di↵erential form? Take x 2 E ✓ Rn, y 2 V ✓ Rm, so that if
T : E ! V, T (x

0

) = y
0

(with the point not necessarily unique). Let ! be a k-form field on V , so we
can write ! =

P
I

b
I

(y
0

)dy
I

. We want to use T to define a di↵erential form !
T

at x in the domain.
Try !

T

=
P

I

b
I

(T (x
0

))dx
I

. This should remind you of dual spaces: if g 2 W ⇤, T : V ! W , then
T t(g) = (g � T ) 2 V ⇤.

What about the pushforward? Reverse the set-up: for ! =
P

I

b
I

(x
0

)dx
I

a di↵erential form at x in
E, perhaps the best candidate is !

push

=
P

I

a
I

(y
0

)dy
I

=
P

I

b
I

(T�1(y
0

))dy
I

. But this isn’t well-defined
unless T is injective.

Definition 4.87. !
T

=
P

I

b
I

(T (x
0

))dx
I

is called the pullback of ! =
P

I

b
I

(y
0

)dy
I

, a k-form, in
E.

Theorem 4.88. If ! is a k-form and � is a m-form, then
(1) (! + �)

T

= !
T

+ �
T

(2) (! ^ �) = !
T

^ �
T

(3) d(!
T

) = (d!)
T

.

Now let E ✓ Rn, T : E ! V ✓ Rm, T 2 C0, S : V ! W ✓ Rp, S 2 C0. We can pullback twice a
! in W to get (!

S

)
T

in E, and we also see that (!
S

)
T

= !
S�T := !

ST

.

Theorem 4.89. Suppose T is a C0 mapping of an open set E ✓ Rn into an open set V ✓ Rm,
and � is a k-surface in E and ! is a k-form in V . Then

R
�

!
T

=
R
T�

!.

We’ll talk briefly about a small portion of simplical homology (introduced in algebraic topology). Our
previous set-up was for De Rham cohomology (cohomology is dual to homology). Stokes’s Theorem is a
duality statement as well. There are more abstract objects known as simplices. Recall that a k-simplex
is Qk = {u 2 Rk|u =

P
k

i=1

↵
i

✏
i

|↵
i

� 0,
P

k

i=1

↵
i

 1}. This traces out a positive orthant in Rk. Fix
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p
0

, p
1

, ..., p
k

2 Rn.

Definition 4.90. The oriented a�ne k-simplex � = [p
0

, ..., p
k

] is the k-surface in Rn with parameter

domain Qk, given by the map �(↵
1

✏
1

+ ... + ↵
k

✏
k

) = p
0

+
P

k

i=1

↵
i

(p
i

� p
0

). Also, let � = [p
i0 , ..., pik ],

where p
i0 , ..., pik is a permutation of p

0

, ..., p
k

. These two are related by the sign of the permutation.

Take all a�ne k-simplices �’s on Rn, and put them into groups of + and � orientation.

Definition 4.91. An oriented 0-simplex takes Q0 ! Rn, and define this as � = +p
0

or � = �p
0

.R
�

f := ±1f(p
0

).

Theorem 4.92. If � is an oriented rectilinear k-simplex in an open set E ✓ Rn and � = ✏ · � (✏ = ±1),
then for all k-forms ! in E, Z

�

! = ✏

Z

�

!.

Definition 4.93. An a�ne k-chain � in an open set E ✓ Rn is a collection of finitely many oriented
a�ne k-simplices �

1

, ...,�
r

in E (not necessarily distinct). If ! is a k-form in E, then
R
�

! :=
P

r

i=1

R
�i
!.

We denote � = �
1

+ ...+ �
r

, which is a formal sum.

Definition 4.94. For k � 1 the boundary of the oriented a�ne k-simplex � = [p
0

, ..., p
k

] is defined

to be the a�ne (k�1) chain @� =
P

k

j=0

(�1)j [p
0

, ..., p
j�1

, p
j+1

, ..., p
k

], the summands of which are k�1
simplices.

Example 4.95. A line connecting p
0

and p
1

is a 1-simplex in R3; � = [p
0

, p
1

]. @([p
0

, p
1

]) = [p
1

] � [p
0

].
Notice that this has a left-to-right orientation.

Example 4.96. A triangle with nodes p
0

, p
1

, p
2

is a 3-simplex. @([p
0

, p
1

, p
2

]) = [p
1

, p
2

]� [p
0

, p
2

] + [p
0

, p
1

],
which is a chain of 2-simplices with orientation. Also check that @([p

1

, p
2

]� [p
0

, p
2

]+ [p
0

, p
1

]) = 0 (notice
that applying the boundary operator twice gives zero always).

These tools let us state Stokes’ theorem more precisely, which we will state without proof:

Theorem 4.97. (Stokes theorem) If  is a k-form of class C00 in an open set V ✓ Rm and if W is
a (k � 1)-form of class C0 in V , then Z

 

d! =

Z

@ 

!.

Remark 1. Note that taking k = 1 gives the FTC:
R
1-chain

df =
R
@(1-chain)

f , e.g.
R
[a,b]

df =
R
b�a

f =

f(b)� f(a).
Remark 2. Note that the exterior derivative operator (with d2 = 0) and the boundary operator (with
@2 = 0) are dual to each other.

5 Complex analysis

Complex analysis is the study of complex-analytic functions, which are also called holomorphic. Some
of the most important things in complex analysis are the Cauchy-Riemann equations, contour inte-
gration, and analytic continuation. Due to time considerations, we will only go over some topics and
examples en passant; please fill in the details yourself.
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Definition 5.1 f : C ! C is holomorphic at z 2 C if the limit

lim
h!0

f(z + h)� f(z)

h

exists for h 2 C. Check that linearity and the product and quotient rules hold for holomorphic functions.
To test whether or not a function is holomorphic, we have the Cauchy-Riemann equations:

Theorem 5.2. (Cauchy-Riemann equations) f : C ! C is complex-analytic on ⌦ i↵ for f written
as f(x, y) = u(x, y) + iv(x, y), the following equations hold on ⌦:

@u

@x
=
@v

@y
and

@u

@y
= �@v

@x
.

If f satisfies the Cauchy-Riemann equations, then f 0(z) = @f

@z

.

Brushing aside some formality in provide provided by a complex analysis course (look up Goursat’s
theorem, Morera’s theorem, etc.), we state Cauchy’s integral formula:

Theorem 5.3. (Cauchy integral formula) Suppose ⌦ ✓ C is open, f : ⌦ ! C is holomorphic and
D := {z : |z� z

0

|  r} is contained in ⌦. Let � be the circle forming the boundary of D. Then for every
a in the interior of D,

f(a) =
1

2⇡i

Z

�

f(z)

z � a
dz

Cauchy’s integral formula and the theory of residues give rise to a novel method of evaluating in-
tegrals, namely contour integration. We will illustrate this with an example:

Example 5.4. Evaluate Z 1

�1

x sinx

x2 + a2
dx

using the residue theorem.
Answer. Observe that the poles of f(z) = ze

iz

z

2
+a

2 are ±ai, and z = ai in the upper half-plane has

residue iae

�a

2ia

= e�a/2: to see this, observe that

lim
z!ai

(z � ai)
zeiz

z2 + a2
= lim

z!ai

(z � ai)
zeiz

(z � ai)(z + ai)
=

zeiz

z + ai

����
z=ai

= e�a/2.

Now we write f(z) = z(cos z+i sin z)

z

2
+a

2 , so we would like to compute the imaginary part of
R1
�1 f(z)dz. To

do this, we will integrate f(z) over a semi-disk; e.g. if we let C
R

denote the counterclockwise contour
of the semi-circle of radius R centered at 0, we first claim that

R
CR

f(z)dz = 0 as R ! 1 because

integration by parts with u = z

z

2
+a

2 and dv = eiz gives

Z

CR

f(z)dz =

Z

CR

zeiz

z2 + a2
dz =

zeiz

i(z2 + a2)

����
R

�R

�
Z

CR

eiz
�(z2 � a2)

i(z2 + a2)2
dz

Since z 2 C
R

) |eiz|  1, we impose the bound | ze

iz

i(z

2
+a

2
)

|R�R

|  2R

R

2�a

2 . The estimation lemma, and
the observation that the length of the path of integration is half the circumference of a circle with radius

R, gives us the bound |
R
CR

eiz �(z

2�a

2
)

i(z

2
+a

2
)

2 dz|  (a

2
+R

2
)⇡R

(R

2�a

2
)

2 (for R > a). Thus, combining these bounds and
letting R ! 1, we see that

zeiz

i(z2 + a2)
|R�R

�
Z

CR

eiz
�(z2 � a2)

i(z2 + a2)2
dz  2R

R2 � a2
+

(a2 +R2)⇡R

(R2 � a2)2
! 0.
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Now the result follows from the residue theorem by integrating over the semi-disk of radius R at the
origin and letting R ! 1, that

Z 1

�1

x sinx

x2 + a2
dx = Im(2⇡i res

ai

f) = Im(2⇡i(e�a/2)) = ⇡e�a,

as desired. ⌅
Complex analysis also deals with meromorphic functions, entire functions, gamma and zeta

functions, conformal mappings, and much other fun stu↵. Since it will take a while to build up
the background for these other concepts, we will skip to something else.... If you want to read up
on complex analysis, Stein and Shakarchi’s Complex Analysis is a good text; a more advanced text is
Ahlfors’s Complex Analysis.

6 Probability theory

Probability theory is the study of random variables and properties of their distribution. It’s probably
one of the funnest branches of mathematics, and certainly one of the most applicable.

The following notes are from an advanced probability theory course at Harvard, and will provide
you with great context. Hopefully, the style and format of these notes will give you a sense of what
college and grad school-level mathematics is like, so I will not bother to simplify them. Please look up
terms that you are not familiar with. For a more basic introduction (if you don’t want to fill in te gaps
yourself), see DeGroot’s Probability and Statistics.

Measure Theory. The Banach-Tarski paradox provides motivation for measure theory. We’ll write
(⌦, F, P ) for reference, where ⌦ is the sample space. We’ll assume that ⌦ is fixed.

Definition. A �-algebra is defined to be F ✓ 2⌦ (where 2⌦ is the power set of ⌦, i.e. the set of
all subsets) such that:

1. ; 2 F
2. If A 2 F , then AC 2 F .
3. If A

1

, A
2

, ... 2 F , then [1
n=1

A
n

2 F .

Example. Let ⌦ be partitioned into disjoint piecesA,B,C,D. The �-algebra is then F = {;,⌦, A,B,C,D,A[
B,A [ C,A [B [D, ..., }, and F has 16 elements.
Remark. The number of all elements in all �-algebras is a power of 2.
Remark. There are no countably infinite �-algebras. (Why?)

There is one very important �-algebra we will need, called the Borel �-algebra with ⌦ = R. How
do we construct it? Let’s begin with the set of all closed intervals [a, b] : a, b 2 R. So F

0

= {closed
intervals}. This isn’t a �-algebra, so now let’s take F

1

= {countable unions, intersections of sets in F
0

or their complements}. F
1

is not a �-algebra either. So let F
2

be the set in which we keep taking unions
and intersections. F

2

is still not a �-algebra (show this).
Now let F1 = [1

j=1

F
j

. F1 is still not a �-algebra (we can show this in analysis). Let F1+1

be
defined likewise (1+ 1 is in the ordinal, but not cardinal sense). If we keep going, we still do not get a
�-algebra, but if we go into uncountable territory we will finally obtain a �-algebra.

Fact. Any non-empty intersection of �-algebras is a �-algebra on the same ⌦.
Caveat. In general, this is false for unions.

An immediate consequence of this fact is that if we have any collection F
0

(which may or may not
be a �-algebra), there exists a smallest unique �-algebra containing F

0

. This is because we can just
intersect all �-algebras that contain F

0

(at least one �-algebra contains F
0

). This is called the �-algebra
generated by F

0

.
What about P? P is a mapping such that P : F ! [0, 1], and that the following two axioms hold:
1. P (;) = 0, P (⌦) = 1.
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2. P ([1
n=1

A
n

) =
P1

n=1

P (A
n

) if A
1

, A
2

, ... are disjoint events.

These axioms are necessary if you want to be coherent. Can we accept finite, but not countable
additivity? This is an alternate philosophy.

Definition. A random variable is a function X : ⌦ ! R such that X is measurable; i.e. X�1(B) 2 F
for all Borel B ✓ R.

Here X�1(B) := {! 2 ⌦ : X(!) 2 B} := {x 2 B}.
The events are of the following form: X = x, X  x.

Example. If B = (�1, 3], then x 2 B is an event. So x  3, which is {! 2 ⌦ : X(!)  3}.
Notation. B is a Borel set, while B is a Borel �-algebra. So B 2 B.

Most of probability theory is on random variables and their representations. We use measure to rigor-
ously define r.v.’s, which are described by their distributions.

Definition. A r.v. is a mapping X : ⌦ ! R. For a �-algebra F , X�1(B) 2 F (the preimage) for
all B Borel in R. An inverse may not necessarily exist.

We can also write this as X�1(B) = (X 2 B). Although this may be an abuse of notation, this
allows us to write things like X = x, (X  x) = X�1((�1, x]).

Let’s spend some time on images and preimages. For f : S ! T , the image of A ✓ S is f(A) =
{f(x) : x 2 A}. f(S) is the range.

The preimage is as follows: for B ✓ T , then f�1(B) = {x 2 S : f(x) 2 B}.
Let’s practice some true-false questions.
1. f([

↵

A
↵

) = [
↵

f(A
↵

): True
2. f(\

↵

A
↵

) = \
↵

f(A
↵

): False
3. f�1([

↵

A
↵

) = [
↵

f�1(A
↵

): True
4. f�1(\

↵

A
↵

) = \
↵

f�1(A
↵

): True
5. f�1(AC) = (f�1(A))C

Why is (4) true and (2) false? Let’s write a quick ”definition-chasing” proof: Let x 2 f�1(\
↵

A
↵

) ,
f(x) 2 \

↵

A
↵

, f(x) 2 A
↵

8↵, x 2 f�1(A
↵

)8↵, x 2 \
↵

f�1(A
↵

).
(2) can be edited to make a true statement: f(\

↵

A
↵

) ✓ \
↵

f(A
↵

).
The technical definition of a r.v. requires the assumption that (X 2 B) 2 F for all Borel B. Why is it

enough to look at intervals of the form B = (�1, x] for all x 2 R? B’s of this form actually generate all
Borel sets. Now consider {B Borel: X�1(B) 2 F}. Assume (�1, x] 2 A for all x, and notice that A is
a �-algebra: ; 2 A, complements are in A; now show countable unions are also in A. For B

1

, B
2

, ... 2 A,
X�1([1

n=1

B
n

) = [1
n=1

X�1(B
n

)(2 F ) 2 F . So A is a �-algebra. Since A contains the smallest algebra
containing all Borel B, and actually is the smallest �-algebra containing all such Borel B, it contains all
generations of B, so we conclude that A = B.

Definition. The distribution of a r.v. X is P (x 2 B), as a function of B 2 B, where B is the set
of all Borel sets over R. This is also known as the law of X,L(X).

We don’t want to find the P ’s for all Borel sets, so we wish to show sometime that it su�ces to
consider F (x) = P (X  x). This is known as the CDF, the cumulative distributive function. It is
perfectly valid to think of the CDF as the distribution.

Definition. If ~X : ⌦ ! Rn is a random vector, then its (joint) distribution is P ( ~X 2 B), where B
is Borel in Rn.

Notation. X ⇠ Y means X and Y , which are r.v.’s, have the same distribution. This will, hope-
fully, not conflict with the notation X ⇠ N(0, 1).
Caveat. A r.v. is distinct from its distribution.
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Proof. (1) Assume T  n, with n 2 Z+. M
t

= M
0

+(M
1

�M
0

)+(M
2

�M
1

)+ ... = M
0

+
P

T

j=1

(M
j

�
M

j�1

). So we want to show E(
P

T

j=1

(M
j

�M
j�1

)) = 0.

M
0

+
TX

j=1

(M
j

�M
j�1

) = M
0

+
nX

j=1

(M
j

�M
j�1

)I
(T�j)

) EM
T

= EM
0

+
nX

j=1

E((M
j

�M
j�1

)I
(T�j)

).

By Adam’s Law, E((M
j

�M
j�1

)I
(T�j)

) = E(E((M
j

�M
j�1

)(I
(T�j)

|X
0

, X
1

, ..., X
j�1

)). But M is a
martingale and T is a stopping time, so I(T � j) = 1� I

(T<j)

= 1� I
(Tj�1)

. But this is known since
we have X

j�1

. So ”= E(I(T � j)E((M
j

�M
j�1

)|X
0

, ..., X
j�1

)) = E(I(T � j)0) = 0.
(2) Prove this by truncation. Let T

n

= min(T, n). So this is a bounded stopping time (check that it
still is a stopping time). Then ET

n

= EM
0

by what we just proved, and taking n ! 1 we observe that
T
n

! T , M
Tn ! M

T

a.s. Since we assume that |M
Tn |  c, use bounded convergence and take the limit

of both sides.
(3) Use a telescoping series, as before, to write M

Tn �M
0

=
P

Tn

j=1

(M
j

�M
j�1

)). Bound this using

the triangle inequality: ”
P

Tn

j=1

|M
j

� M
j�1

|  cT
n

 cT . But we also assumed that E(T )  1.
Dominated convergence then says that E(M

Tn �M
0

) ! E(M
T

�M
0

).

Now we turn to consider the gambler’s ruin problem. The problem is the same as considering a RW on
the integers, which track the changes to gambler A’s money. Bankruptcy for A will be at �a, and for
B bankruptcy will be b. Let p be the probability that A wins in each round, and T the stopping time;
T = inf{n : M

n

= �a or M
n

= b}.
If p = 1/2, then it’s a SSRW again, and we consider a stopped martingale at �a or b. (Note that

this is also a Markov chain.) We can apply Convergence to see that M converges a.s., and we can use
the Optional Stopping Theorem to show that P (A wins) = a

a+b

, and E(T ) = ab.
Now consider the unfair case. If p 6= 1/2, q = 1 � p. This is a Markov chain, but not a martingale.

But ( q
p

)Mn is a martingale (check this; this is also related to NEFs). (If the ratio blows up, apply

truncation again.)

Example. (Say ”Red”) We have a deck of 52 cards. Turn over cards one-by-one, but before that
say ”red” if you guess that the next card will be red. You win if you guess correctly, and lose if you
don’t. We can do this for any card, including no cards.

We’ll prove a theorem that says our chances of winning can never be better or worse than 1/2. Let
M

n

be the fraction of red cards in the remaining cards after n cards have been revealed. 0  n  51.
(A pencil problem is to check that M

n

is a martingale.) Thus EM
T

= EM
0

= 1/2.
Another way to think about this result is as follows. Draw a picture of 52 cards ⇤⇤⇤...⇤. Let T

denote the T cards; then there are 52� T cards remaning. After T cards, we can flip the 52� T cards
around, and therefore we can always pick the last card, which has a probability of 1/2.

7 Algebra and algebraic topology

Algebra is the study of structure, and one of the most important branches is group theory. With the
background you’ve built thus far, you should have no problem grasping the fundamentals of algebra.
Thus I will only mention a few points here; for a great textbook, consult Artin’s Algebra and Hatcher’s
Algebraic Topology

A group is a set endowed with an operator (group multiplication) that satisfies closure, associativity,
identity, inverse. For example, Z is a group w.r.t. integer addition: for a, b, c 2 Z, a+ b 2 Z; (a+ b)+ c =
a+ (b+ c); 0 + a = a; �a+ a = 0. You should check the the dihedral group of order n, D

n

, which has
elements being the transformations of a regular polygon (that is, the identity, rotations, and flips), is
also a group. Groups are important for modeling symmetry, as well as number theory etc.
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Subgroup are groups in bigger groups. There are many things that can be proved about them. In
the future, look up the Sylow theorems, normal subgroups, quotient groups....

Rings are sets with operators + and · that satisfy closure, associativity, existence of additive/multiplication
identity, existense of additive inverse, commutativity of addition, and distributive laws. Some examples
of rings: Z,R.

For an elementary treatment of algebraic topology, consult Munkres’s Topology. For a high-powered
graduate introduction, see Hatcher’s book. I will simply list some of the more important concepts:

Homotopy. A homotopy can be thought of as a continuous deformation of one shape to another.
For example, a doughnut is homotopic to a co↵ee mug (they both have genus 1). We can define an
equivalence relation w.r.t. homotopy. An equivalence relation is ⇠ on a set A such that for all
a, b, c 2 A, a ⇠ a, a ⇠ b =) b ⇠ a, a ⇠ b ⇠ c =) a ⇠ c.

The fundamental group is the first homotopy group. You can associate a group to any topologi-
cal space that provides a way of determining when two paths, starting and ending at a fixed base point,
can be continuously deformed into each other. In Rn, the fundamental group is the trivial group with
one element. The circle, since each homotopy class consists of all loops which wind around the circle a
number of times, is Z. van Kampen’s theorem allows you to express the structure of fundamental
group of topological space in terms of the fundamental groups of two open, path-connected subspaces
that cover X.

Please look up these other terms yourself: covering spaces, pushout diagrams, fibers, CW complexes,
homology theory, category theory, groupoids....

8 Di↵erential topology and geometry

Definition 8.1. A function f is said to be smooth if it’s of class C1 (that is, it is infinitely continuously
di↵erentiable).

Just as linear maps were the central functions of study in linear algebra, di↵eomorphisms are the
central objects of study in di↵erential topology.

Definition 8.2. A map f is a di↵eomorphism if it’s one-to-one and onto, and if the inverse map
f�1 is also smooth.

Di↵eomorphisms map from one space to another, and for smoothness to make sense we need some-
thing that’s like Euclidean space, but we can generalize what we mean by a “space” into manifold.

Definition 8.3. M is a k-dimensional manifold if it is, intuitively, locally di↵eomorphic to Rk, mean-
ing it has a coordinate chart. In particular, a topological manifold of dimension k is (M, I, {(U

i

,'
i

) :
i 2 I}) where M is a paracompact, Hausdor↵ topological space, I is an index set, and for all i 2 I,
U
i

⇢ M is open and '
i

: U
i

! V
i

⇢ Rn, where '
i

is a homeomorphism and V
i

⇢ Rn is open. Also,
M = [

i2I

U
i

.

Definition 8.4. M is smooth if '
j

� '�1

i

is smooth; likewise for analytic (coordinate change is
analytic), complex (coordinate change is holomorphic), algebraic, a�ne,....

Example 8.5. The circle S1 = {x 2 R2 : ||x|| = 1} is a smooth manifold; Sn/ is also a smooth
manifold by stereographic projection. Other examples include the projective space CPn, the torus
Tn = (S1)n, Grassmannians....

Example 8.6. Lie groups are groups that are also manifolds. Examples of this include the general
linear group GL(n,R), the orthogonal group O(n,R), the standard linear group SL(n,R), the standard
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orthogonal group SO(n,R), the unitary group U(n), etc. Use the implicit function theorem to show
that these are indeed manifolds. The Lie algebras of these groups can be thought of as their tangent
spaces at the identity.

We will skip over things usually covered in an undergraduate di↵erential topology course, e.g. transver-
sality, immersion (f is one if df

x

is injective at x), embeddings (an injective immersion, e.g. one
that is di↵eomorphic to its image, which is a submanifold), Sard’s theorem, Whitney embedding
theorem, intersection theory....

I’d like to skip to a part of di↵erential topology that I find a bit more interesting, namely de Rham
cohomology. This is the cohomology on the set of di↵erential forms on a smooth manifold M with the
exterior derivative as the link.

The background on di↵erential forms provided in the Real Analysis should be su�cient. Di↵erential
k-forms (which are formed by tensoring more elementary di↵erential forms; a p-tensor on V is a real-
valued function T on V p that is multilinear, such as linear functionals, dot product, determinant, etc.)
are very important things here; denote the set of all k-forms on a smooth manifold M as ⌦k(M).

Remark. The Einstein summation convention is to write something like n
i

instead of
P1

i=0

n
i

when the sum is understood. We will adopt this convention from now on.

Anyways, let’s go over the exterior derivative quickly. Forms can not only be integrated, but also
di↵erentiated via the exterior di↵erentiation operator.

Definition 8.7. If ! = a
I

dx
I

is a k-form, then the exterior derivative of ! is a k + 1 form given by
d! = da

I

^ dx
I

.

Theorem 8.8. The exterior di↵erentiation operator, defined on smooth forms on U ⇢ Rk open, has the
following three properties:

1. Linearity: d(!
1

+ !
2

) = d!
1

+ d!
2

.
2. The Multiplication Law: d(! ^ ✓) = (d!) ^ ✓ + (�1)p! ^ d✓ if ! is a p-form.
3. The cocycle condition: d(d!) = 0 for ! 2 ⌦k(M).

Moreover, this is the only operator that has these properties and agrees with the previous definition of
df for smooth functions f .

Proof. This is trivial; use the definition to prove these statements. ⌅

Definition 8.9. ! 2 ⌦k(M) is closed if d! = 0, and exact ! = d✓ for ✓ 2 ⌦k�1(M). Two closed
k-forms are cohomologous if their di↵erence is exact: ! ⇠ !0 =) ! � !0 = d✓.

De Rham cohomology, in a sense, measures the di↵erence between closedness and exactness of di↵eren-
tial forms, which has many applications in analysis and topology (for example, it gives the nontrivial
solutions of a set of di↵erential equations...; for more soft questions on cohomology/homology, consult
google). So we have a cochain complex

0 �!
d

⌦0(M) �!
d

⌦1(M) �! ...

Definition 8.10. The k-th de Rham cohomology group Hk(M) is the set of equivalence classes of
k-forms, e.g.

Hk(M) := Ker(d : ⌦k(M) ! ⌦k+1(M))/Im(d : ⌦k(M) ! ⌦k+1(M)).

I will leave you to learn more about cohomology and other parts of di↵erential topology/geometry.
In particular, you should look up Mayer-Vietoris sequences, Poincaré lemma, vector bundles,
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Poincaré duality, symplectic geometry, metrics, connections, torsion, geodesics.... Due to lim-
ited time, I cannot go over these here. But some good sources are Guillemin and Pollack’s Di↵erential
Topology, and Je↵rey Lee’s Manifolds and Di↵erential Geometry....

9 A brief discussion of other applications

The physics applications of all the mathematics we’ve discussed above should be more or less obvious,
especially in the section for di↵erential geometry (in particular, manifolds are the basic mathematical
structure we use to talk about our universe and string theory; see, for example, Calabi-Yau manifold).
Symplectic geometry and the Hamiltonian are very important concepts for mechanics.

There are some not-so-obvious applications of mathematics, namely in biology. Mathematics in the
form of di↵erential equations and stochastic processes show up a lot in biology: for example, when
analyzing the e↵ects of a drug (need di↵erential equations), the stability of a system (need Jacobians),
the processes of stochastic gene expression (need stochastic analysis/simulations). Graph theory helps
with a lot of the computations, and is especially important in other fields of mathematics or applied
mathematics, such as theoretical computer science. Evolution also uses a bunch of mathematics: some
examples are the Lotka-Volterra equations, Markov chains....

This latter, more applied approach can fall under the category of dynamical systems, which involves
analysis. Fractals and chaos also fall into this category. For a good introduction, see Sholomo Sternberg’s
Dynamical Systems.

10 Tips for succeeding in mathematics at college

1. You should also challenge yourself to learn at the highest level possible.
2. Make sure you really understand definitions. Have examples of every term in mind.
3. Seek out faculty and friends to talk about mathematics; the knowledge you gain from collaboration

is tantamount to being a good mathematician. You will oftentimes learn more mathematics by
talking about it with friends than reading.

4. Get to enjoy learning about proofs and writing them. Proofs are at the heart of mathematics, even
in applied mathematics, and the sooner you come to terms with them, the better o↵ you’ll be.

5. Read more textbooks. While doing the required readings will get you through class, to develop a
feel for how mathematics is done you should acquaint yourself with the styles and though processes
of many mathematicians.

6. Similar to the following point, if there is a problem that you cannot get, even after consulting the
teacher and many other friends, it’s probably time to move on. Returning to the same question
after more experience or doing other problems really helps.

7. Lastly, don’t forget to enjoy your life in college! While mathematics is a very important thing,
remember that you only go to college once, but your career as a mathematician (or scientist) will
last a lifetime.
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