
LECTURE NOTES, WEEK 2

CHRIS KENNEDY

I’ll make a disclaimer about these notes that holds for all future lecture notes as well: these may or
may not be a good transcript of what happened in class. As a general rule, the lecture notes cover about
120% of what I hope to cover, but if we get sidetracked on something interesting, they may end up as
only 80%. You never know. Hopefully, though, these will turn out to be useful.

1. Symmetries of a Square

As in problem set 0, consider a square with vertices going clockwise around, A,B,C, D. There are
essentially eight things we can do to the square: rotate by 0, 90, 180, or 270 degrees; flip across the
horizontal or vertical axis, or flip across the main diagonal or the off-main diagonal. In class, we called
these I, r90, r

2
90, r

3
90, fh, fv, fAC , fBD. For simplicity, I’m going to drop the 90 (so r is a rotation by 90◦).

For reasons explained in a couple of pages, let’s call this set D4. Now, we notice a variety of things:

• If you compose two rotations, you get another one. For example, r · r2 = r3, r3 · r2 = r, r2 · r2 = I,
and so on. In particular, r4 = I. Incidentally, we say that r has order 4, since 4 is the smallest
positive power we can raise r to to get the identity. We’ll have much more to say about order
next time.

• Remembering that f · g means apply g first, then f (as in (f · g)(�) = f(g(�))), we can compose
other operations. So fv · r = fAC , r3 · fh = fBD, and fAC · fBD = r2. Since composing any two
symmetry operations gives us another one, we say they’re closed under composition.

• We have an identity transformation, which leaves the square as is. If you apply the identity before
or after some operation f , it’s the same as just doing f itself; in other words, I · f = f · I = f for
any symmetry operation f .

• If you tediously compute, for example, (fv · r) · r2 and fv · (r · r2), you find that, since fv · r = fAC

and r · r2 = r3, (fv · r) · r2 = fBD = fv · (r · r2). Since we just moved some parentheses around,
we call this property associativity.

• Any operation has an inverse operation, one that brings the square back to its original position.
For example, since r · r3 = I, r3 is the inverse of r and vice versa. We say r−1 = r3. By the same
token, since any flip composed with itself is the identity, f · f = I, or f2 = I, meaning f = f−1

for any flip f . Using the handy ⇒ introduced in class (where A ⇒ B means A implies B), we can
write this as “f a flip ⇒ f2 = I ⇒ f = f−1”.

• Finally, order matters! For example, fh · r = fBD but r · fh = fAC . It’s no coincidence, however,
that changing the order still results in a flip across a diagonal–but this is a subtle point that we
won’t discuss until later.

We can collect all of these myriad observations in the following set of rules, using supercompact lazy
notation (that is, using ∀ to mean “for all”, ∃ to mean “there exists”, and s.t. to mean “such that”):

Definition A group G is a set together with an operation · satisfying the following properties:

(1) (Closure) ∀a, b ∈ G, a · b ∈ G.
(2) (Identity) ∃I ∈ G s.t. ∀a ∈ G, a · I = I · a = a.
(3) (Associativity) ∀a, b, c ∈ G, a · (b · c) = (a · b) · c.
(4) (Inverses) ∀a ∈ G,∃a−1 ∈ G s.t. aa−1 = a−1a = I.
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If G satisfies a fifth property, that a · b = b · a for all a, b ∈ G, then we say · is commutative and that G
is a commutative group or abelian group. We’ll return to all of this a bit later.

2. Things that look like the integers

We now head off in a somewhat different direction. Let’s look at the set S of words made from the
letters a and b, with the proviso that we remove any instance of ab or ba from S. So the words aaa and
bbbbb are fine, but aaababba will be redacted to aa. If we use our knowledge of groups to try to understand
S, we come up with the following:

• Any two words in S can be combined to give another one, assuming you redact enough. So aaa
and bbbbb can be shoved together as aaabbbbb = bb or as bbbbbaaa = bb; it seems the operation of
concatenation is closed and commutative in S. For the future, we can abbreviate things like aaaa
to a4, just to make life easier.

• What is ab? We’re supposed to eliminate it, leaving...nothing. We call this the empty word, or
the identity. This makes sense–if you concatenate ab to the beginning or end of any word, it just
gets redacted off. We can use the symbol e for ab (or ba, for that matter).

• Associativity holds; this isn’t really all that interesting, so I’ll leave it at that.
• What do we make of inverses? We know ab = e, so a = b−1, and this generalizes pretty easily to

an = b−n and a−n = bn. So everything has an inverse.

This means that, in short, S is a commutative group. The question is, what group is it? Well, you
might notice that anam = an+m and that anbm = an−m. So multiplication in S looks like we’re just
messing with exponents. In fact, if we replace a with 1, b with −1, and concatenation with addition,
everything is just happening in Z, the integers. Just to get an idea for how this works, if we want to
concatenate b3 and a7, we can either just do it in S, yielding bbbaaaaaaa = aaaa = a4, or we could do it in
Z by saying b3 = −3, a7 = 7, so −3 + 7 = 4, which becomes a4, just as we had in S. This correspondence
between S and Z is incredibly important (the idea of it, not specifically S), and is called an isomorphism.
We say S is isomorphic to Z, or S ' Z.

To illustrate this concept with another example, let’s look at the matrix A =
(

1 1
0 1

)
and its powers,

collected in the set T = {An for all n}. If we square A, for example, we get
(

1 1
0 1

) (
1 1
0 1

)
=(

1 2
0 1

)
, and standard 2×2 matrix stuff tells us that A−1 =

(
1 −1
0 1

)
. This should be very suggestive

already, especially when you throw in that A0 = I =
(

1 0
0 1

)
. In fact,

Proposition 2.1. For all n, An =
(

1 n
0 1

)
.

Proof. We proceed by induction. For n = 0, this is trivial, as we have already established that A0 = I.

So assume Ak =
(

1 k
0 1

)
; we need to calculate Ak+1. This can be accomplished by multiplying by A

again, so AkA =
(

1 k
0 1

) (
1 1
0 1

)
=

(
1 k + 1
0 1

)
. Since the statement holds going from k to k + 1,

it holds for all n. �

Taking this a little further, a short computation shows AmAn =
(

1 m + n
0 1

)
= Am+n, and this

motivates us to say that T is isomorphic to Z, just as S was. In particular, we set up a correspondence

between
(

1 n
0 1

)
and n.
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3. Basic Group Theory

It’s time to get our hands dirty and actually work with groups somewhat abstractly. Since we’ve grown
up a little since the first section, I’m going to drop the · unless it’s really necessary to include. So first,

Theorem 3.1. In a group G, the identity I is unique.

Proof. Assume we had two identities, I and J . This means both of them satisfy the identity law for the
group, that is, Ia = aI = Ja = aJ = a for all a. But then IJ = I since J is an identity, but also IJ = J
since I is an identity. Stringing these together, we get I = J , so the identity is unique. �

Using a similar idea, but a bit more mess, you can prove that the inverse of an element a is unique.
As a quick exercise, convince yourself that (a−1)−1 = a and that (ab)−1 = b−1a−1. Now let’s look back
briefly at our group D4 from earlier. We noticed that the rotations seem to work nicely together–they are
closed, have inverses, and are certainly associative. They are, in short, another group. This leads us to
define

Definition If G is a group, then H ⊂ G is a subgroup if H is itself a group.

So {1, r, r2, r3} is a subgroup of D4. We’ll call it C4. Some nice facts about subgroups:

Proposition 3.2. If G is a group, then:

(1) G and {e} are subgroups. These are the trivial subgroups.
(2) If H and K are subgroups of G, then so is H ∩K.
(3) If H is a finite subset of G which is closed under ·, then H is a subgroup.

Proof. (1) Since G is a group, it is clearly a subgroup, since G ⊂ G. As for {e}, it satisfies all the
properties (since ee = e, e−1 = e, e(ee) = (ee)e), so it is also a subgroup.

(2) Let a, b ∈ H ∩ K. Then ab ∈ H and ab ∈ K since a, b are both in H and K, so ab ∈ H ∩ K.
Similarly a−1 ∈ H ∩K, and e ∈ H ∩K, all for the same reasons.

(3) This one is a little trickier (but not tricky enough that I should have screwed it up–sorry about
that). Let a ∈ H be arbitrary. Then since H is closed, a, a2, a3, . . . must be in H as well.
This is an infinite list, but H is finite, so two (well, many more, but for now we just need two)
on that list must be the same. Say am = an with m > n. Then am−n = e, so we have an
identity. Furthermore, since m > n,m − n > 0 and so m − n − 1 ≥ 0, meaning am−n−1 ∈ H
(we have established that all nonnegative powers of a, including a0 = e, are in H). But since
am−n = e, am−n−1 = am−na−1 = a−1, so a−1 ∈ H. We were given closure, we found an identity,
we inherited associativity from G, and we found inverses, so H is a subgroup.

�

It’s because of the third statement above that I hold that closure is the defining property of a group,
and the one that requires the most cleverness to see (but usually not to prove). If you can find a closed
operation on a set, you’re almost certainly home free, because the other properties will almost always fall
into place (not always! see the exercises).

4. Preview

Let’s look ahead to next week just a bit. We’ve already defined cosets, and cosets are useful mainly
for helping to prove some big theorems. The biggest one is Lagrange’s theorem, which is stated below. In
that statement, o(H) means the number of elements in H, and a | b should be taken to mean a divides b,
or b = ka for some integer k. So here’s the statement:

Theorem 4.1. (Lagrange) If H is a subgroup of G, then o(H) | o(G).

Proof. Next time! �
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5. Exercises

Exercises are optional and for your own enjoyment. If you want to hand in solutions, I’ll look at them,
but that’s by no means mandatory or expected. Exercises with a star (*) are harder. This week’s exercises
are a little tame, since I haven’t really given you any big tools yet. So if these aren’t that interesting,
don’t fret–next week’s will have a juicier selection.

1. Can you find a group structure on sets? For operations, try union and/or intersection, and use
whatever bunch of sets you want.

2. Prove that if a2 = 1 for all a in some group G, then G is abelian.
3. Find all the subgroups of D3.
4*. Prove that a cyclic group of prime order has no nontrivial subgroups (don’t use Lagrange’s theorem–

this will give you a nice idea of how slippery things are without it!).
5. Find all the subgroups of Dp, where p is a prime number (Hint: use problem 4). If you’re ambitious,

prove you found all of them–this is a little trickier but not too bad.
6*. Prove that any two cosets of the same subgroup have the same number of elements (we’ll do this

next week).
7**. Prove Lagrange’s theorem (Hint: use problem 6).
8*. Let S3 be the group of permutations of 3 objects {a, b, c}. For example, one element of S3 is

swapping a and b, while another is cyclically permuting a to b, b to c, and c to a. Find the rest of the
elements of S3, and then prove it’s isomorphic to D3.


