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I. INTRODUCTION 

The equivalence problem for Kleene's regular 
expressions has several effective solutions, all of 
which are computationally inefficient. In [I], we 
showed that this inefficiency is an inherent pro- 
perty of the problem by showing that the problem 
of membership in any arbitrary context-sensitive 
language was easily reducible to the equivalence 
problem for regular expressions. We also showed 
that with a squaring abbreviation ( writing (E) 2 
for E.E) the equivalence problem for expressions 
required computing space exponential in the size 
of the expressions. 

In this paper we consider a number of similar 
decidable word problems from automata theory and 
logic whose inherent computational complexity can 
be precisely characterized in terms of time or 
space requirements on deterministic or nondetermin- 
istic Turing machines. The definitions of the word 
problems and a table summarizing their complexity 
appears in the next section. More detailed comments 
and an outline of some of the proofs follows in the 
remaining sections. Complete proofs will appear in 
the forthcoming papers [9, I0, 13]. In the final 
section we describe some open problems. 

2. WORD PROBLEMS AND REDUCIBILITIES 

We consider word problems involvSng (I) regu- 
la=-like expressions for subsets of ~, where ~ is 
a finite set of letters, (2) similar expressions 
for subsets of the nonnegative integers N, and (3) 
certain closed formulas related to the predicate 
calculus. 

Regular-llke expressions over ~ are well-formed 
parenthesized expressions involving constants ~ E 
~, and the empty string k, binary operations • 
(concatenation), U (union), and unary operations 
• (Kleene star), m(complement relative to ~), and 

2(squaring). For any regular-like expression E, 

the set L(E) c~* described by E is defined induc- 
tively in the obvious way, e.g., 

e(~) = [~) for ~ E ~, 

L((Ei. E2) ) = L(Ei).L(E2) , 

L((E) 2) = L(E).L(E), 

L~(E)) = ~ - L(E), etc. 

For any set ~ of letters and set of operations 
c [., U, *, m, 2), define 

MEMBER(~,~ ) = [(x, E) I x E ~, E is a regu- 
lar-like expression over ~ containing only opera- 
tions in~, and x E L(E)], 

INEQ(~, e) = ((El, E 2) I E 1 and E 2 are regu- 

lar-llke expressions over ~ containing only opera- 
tions in~ and L(E I) ~ L(E2) }. 

Integer expressions are well-formed parenthe- 
sized expressions involving nonegatlve integer 
constants written in radix notation (say base two), 
binary operations + (addition), U (union), and the 
unary operation m (complement relative to N ). For 
any integer expression E, the set L(E) c N 
described by E is defined inductively as follows: 

L(m) = [m] for m E N , 

L((E 1 U E2)) = L(E l) U L(E2), 

L((~ I + E2)) = [m+n I m E L(E I) and 

n ~ L(E2)) , 

L(-I(E)) = N- L(E). 

For any set of operations ~ c [+, U,ml,  
define 

__~_-MEMBER(~) = [(x, E) Ixls the binary repr 
resentatlon of some integer n, 
E is an integer expression 
containing only operations in 
o,and n E L(E).}, 

__N-INE~,~) = [ (El, E 2) I E 1 and E 2 are integer 

expressions containing only oper- 
ations in~ and L(Ei) ~ L(E2) }. 
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Finally, we consider Boolean expressions 
involving doubly subscripted Boolean variables x. . 

l,j 
with i,j ~ 1 written in base two notation, and the 
usual Boolean operations, A (and), V (or), ~ (nega- 
tion), m (equivalence), D (implication), and Boolean 
constants 0, I. In describing Boolean expressions 
we write X i for the sequence of variablesx. ,x.,z , 

1,1 l 
...; ZXi for Zx . . . .  ; etc. These l~Xi,2 ~xi,3 xi,3' 

abbreviations do not appear in the Boolean expres- 
sions themselves. We use the notation A(Xi,...,Xk) 

to indicate a Boolean expression containing no 
variable xi, j such that i > k. 

Define for k ~ I, 

B__k = [A(X 1 ..... ~) ! ~I VX2 ~X3 "'" 

QkXk[A(Xi ..... %) = i]} 

where Qk = Z if k is odd and Qk = V if k is even. 

For example, B I corresponds to the satisfiable 

formulas of propositional calculus. Define 

co 

B~ = U B k. 
-- k=l 

Let IEQ denote the set of valid sentences in 
the first order theoTy-of equality. 

We shall classify the complexity of sets of 
words in terms of two binary relations ~log and 

~log-lin' called log-space reducibility, and log- 

linear reducibility, respectively. 

Let ~, 4 be finite sets of letters and f: 

~* 4 4" a function. We say that f is l~-space 
computable iff there is a deterministic Turlng 
machine with a two-way read-only input tape, a one- 
way output tape and one two-way re~d-wrlte working 
tape, which started with any x 6 ~ on its input 
tape will halt having written f(x) on its output 

and having visited at most log21x I tape tape 
squares on its work tape, where Ix| is the length 
of x. 

w , 
Let A c ~ , B c 4 be sets of words. 

Definition. A ~log B iff there is a log-space oom- 

putable function f such that (Vx 6 ~ )[x 6 A = f(x) 
6 B]. If in addition there is a constant c > 0 

such that If(x) I ~ e. lxl for all x 6 ~*, then 

A Nl0~.li n B. 

We assume the reader is familiar with the 
notion of nondeterministic Turing machines [of. 2]. 
Briefly, the time required for a nondeterministlc 
machine to accept an input x is the length (number 
of steps) in the shortest accepting computation; a 
set A of inputs words is said to be accepted in time 

t by a nondeterministic Turing machine~, where 
t: N 4 N , iff for all input words x, (I) x 6 A 
there is an accepting computation of ~ started on 

input x, and (2) x 6 A = there is an accepting 
computation of 90~ on x of length ~ t(Ixl). Similar 
definitions apply for space. 

The main properties of these reducibilities 
are stated in the next two lemmas. 

Lemma 2.1. ~log and ~log-lin are transitive 
relations. 

Lemma 2.2. If A ~log B (A ~log-lin B) and there is 

~deterministic 
a [nondetermlnistic2 Turing machine accepting B in 

time ~ t and space ~ s, then there is a polynomial 
p (and constant c > 0) such that A is accepted by 
(deterministic )~ . 

a luring machine in time ~ t' 
~nondeterministic> 

where 

t'(n) = p(n)omax[t(j) I J ~ p(n)) 

(t'(n) = p(n)omax[t(j) I J ~ c'n]) 

and space ~ s' where 

s'(n) = log2n + maxis(j) [ j ~ p(n)] 

(s'(n) = log2n + max[s(j) I J ~ c.n]). 

To outline the proof of Lemma 2.1, suppose 

A c ~ , B c 4 , C c F and A ~log-lin B via f: 

~* 4 A* and B glog-lln C via g: A* 4 F . Clearly 

x c A = g(f(x)) 6 F , so one need only show that 
g oo~ [~%og-e~a~= computable. The difficulty is 
that the obvious Turing machine which given x on 
its input tape prints g(f(x)) on its output tape 
must write f(x) on its work tape and so may use 

I i 

more than log21x I tape squares. However, instead 

of writing f(x) on its work-tape, a machine with 
input x can simulate the computation of g at argu- 
ment f(x) by recording on its work tape an instant- 
aneous description of the computation of g and the 
position j in f(x) which the input head would 
occupy if the input were actually f(x). Since j 

lfCx) 1 ~ c.]x], only log2]x ] + log 2 c extra 

squares on the work tape are ~equi~ed Co r~c~d j 
To simulate another step in the computation of 
g(f(x)), the machine with input x computes the 

jth digit of f(x) using only log2[x [ work tape 

squares, which is possible since f can be computed 
in log space. Hence, from x on the input =ape, 
f(g(x)) can be printed on the output tape using 
proportional to log21x I work tape squares. The 

compgt@tion can then actually be done using only 
log2[x I work-tape squares using a larger set of 

symbols on the work-tape (of. [2]). 

Note that if f is log-space computable, then f 
is necessarily polynomial time computable. So in 
particular, If(x)I ~ p(Ix]) for some polynomial p. 
With this observation, the preceding argument may 
also be used to show that Klog is transitive. 



The proof of Lemma 2.2 is similar, and is 
omitted. 

We remark that A ~log B = A ~ B where ~ is 

polynomial time reducibility defined by Karp [4]. 
We believe that all of the particular polynomial 
time reductions described in [4] are actually log 
space reducibilities, although it would be surpris- 
ing if log space and polynomial time were the same 
in general. 

Let ~ be a family of sets of words, and ~ a 
transitive relation on all sets of words. We say 
that ~ K C iff B ~ C for all B E ~. C is i-complete 
in ~ iff ~ ~ C and C 6 ~. For example, let ~ be 
the family of sets recognizable in nondeterministie 
exponential time, i.e., A 6 ~ iff there is a con- 
stant a > I and a nondeterminlstic Turing machine 

which accepts A in time ~ an; let C be a set such 
that ~ ~log-lin C. Standard diagonal arguments 

imply the existence of a set A E ~ such that any 

deterministic Turing machine accepting A requires 
I ! 

time ~ 2 ~xl for infinitely many inputs x. The 
contrapositive of Lemma 2 immediately implies that 
there is a constant b > 1 such that any determin- 
istic Turing machine accepting C requires time 

II 
b 'x' for infinitely many inputs I xl . In fact, 
Seiferas [5], extending methods of Ibarra [6] and 
Cook [7], has shown that for I ~ a I < a2, there 

exists a set B recognizable in nondetermlnistlc 

time ~ a2n but not in nondeterminlstic time ~ aln , 

so that C requires time k b n for some constant b > 
1 and infinitely many n even on nondeterministic 
machines. 

In general, from the fact that $ is reducible 
to C by a computationally efficient reducibility, 
one can immediately deduce that the computational 
complexity of C must be approximately as large as 
the computational complexity of any member of ~. 
Additional properties about the complexity of C, 
for example that any machine recognizing C can be 
"sped-up" effectively on infinitely many inputs in 
the sense of Blum [8], can also be proved in most 
cases. A full treatment of these properties of 
efficient redueibilities will appear in subsequent 
papers. 

The following table summarizes our main results 
on the word problems defined above. For each set C 
and family ~ in the tabl~ ~ is reducible to C by 
the indicated reducibility, and an upper bound on 
the complexity of C appears in the final column. 

Complexity of Word Problems 

INEQ({0, I], [U,. ,-~] ) 

INEQ([e, 11, {U,.,2,*)) 

INEQ((O,II, (U,.,2)) 

INEQ([0, i], [U,',*] ) 

INEQ({O, I), [U,.] ) 

MEMBER([O,I], (U,',2 ,_~}) 

B 
tO 

IEQ 

B k 

N-INEQ ([ U,+,-~] ) 

N-MEMBER([ U,+,~} ) 

N-INEQ([ U,+] ) 

N-MEMBER ( [ U, +] ) 

INEQ ({ O], [U,. ,2,-~) ) 

INEQ([01, [O, ",*} ) 

i ~Q( [o )  ,. [u , .  ,~}) 

I~ reducible to C I 

log-lin 

log-lin 

log-lin 

log-lin 

log 

log 

log 

log 

log 

log 

log 

log 

log 

log 

2 

space 222"" " )log2n 

exponential space 

nondeterminls tlc 
exponential time 

nondeterminis tic 
l i n e a r  space  

~ P  

polynomial space 

polynomial space 

~o lynam, t a  1- -~p,,~c e 

polynomial space 

NIP 

polynomial space 

~P 

Upper Bound on C 

space ~2." 

complete 

complete 

complete 

complete 

P 

complete 

complete 

complete 

complete 

complete 

complete 

complete 

complete 

complete 

P 



Following Cook [3] and Karp [4], we let ~ 
denote the family of sets of words A such that A 
is accepted by a deterministic (nondeterministic) 
Turing machine in time bounded by a polynomial. 

The classes ~ for k ~ 0 are defined in [I] and 

discussed in section ~ below. 

3. REGULAR-LIKE EXPRESSIONS OVER {0,I} 

The proofs that INEQ({O,I}, {U,o,2,*]) is log- 
linear complete in exponential space, and that 
INEQ([O,II, [U,',*}) is log-linear complete in non- 
deterministic linear space have appeared in [I]. 
Complete proofs of all the results concerning regu- 
lar-like expressions over {0,I~ (i.e. the first six 
table entries) will appear in [9] and [I0]. Here 
we shall indicate the proof of only the following 

Theorem 3.1. The family of sets of words recogni- 
zable in nondeterministic exponential time is log- 

linear reducible to INEQ({0,1}, (U,.,2}). 

Note that regular-like expressions involving 
2 

only the operations U,', can define only finite 
sets of words, so that the decidability of INEQ([0, 

I}, {U,',2]) is trivial. Todescri~elarge finite sets, 

one can use the identftles A n+l = An.A and A 2n = 

2 (A) ~aowrlte a regular-like expression F such that 
L(F) = L(E) t~, IF1 iS bounded by a constant times 
IEI'logpn,. and F involves only U,°, 2 and the 
0peratiDns in E for any regular-like expression 
E and n ~ O. 

Let ~ be a nondeterministic Turing machine 

* 2 n" which accepts a set A c (0,11 in time ~ It 
will he sufficient to show that A ~log-lin INEQ(~, 

[U,.,21), where ~ is a finite set of letters in- 
cluding symbols for the states and symbols of ~ 

contains a symbol # denoting a blank tape squar~ 
and ~ contains a symbol ~ which serves as an end 
marker. 

As in [I], let Comps(x) be the set of accepting 

computations of ~ on x, that is, Comps(x) consists 

of words of the form #I I #12 ~ ... #Ik# where I I 

is the initial instantaneous description (i.d.) of 
~On input x, I k contains an accepting state, and 

lj+ I is a possible next i.d. following in one step 

from I. for I ~ j < k ~ 2 !xl. No i.d. of ~ need be 
J 

longer than 2.2 n + i, so there is no loss of gen- 
erality in adding the technical requirement that 
each of the i.d.'s be surrounded by blanks to be 
of exactly length 2.2 n + I. 

2 n 
Thus, the initial i.d. for x would be ~ 'qO'~" 

n 
62 -n where qO is the start state of ~ and n = Ix I. 

Note that no word in ComB(x) is longer than 

a(n) = 4 n+2. We shall show how to construct from 
x a regular-like expression E over ~ involving 

x k)b(n) 
only U,.,2 such that L(Ex) = (~ U -Comps(x) 

for a certain integer b(n) ~ a(n). Hence, 

x E A = Comps(x) ~ # ~ L(E x) @ (~ U k)b(n! 

Moreover, it will be apparent from the con- 
struction that the function mapping x to the pair 
(Ex, expression for (~ U k)b(n)) is log-space 

computable and that the length of these expressions 
is proportional to n. Hence A ~log-lin INEQ(~, 

{U,.,2]). 

To construct E we wish to describe a finite 
x 

set of words containing all words in ~ of length 
a(n) except those in Comps(x). Let s = rz-(~] 

for any c 6 ~ and say x = XlX 2 ... x where x. 6 
n i [0,1~. 

Now words may f a i l  to  be i n  Comps(X) because 

they "start wrong". These words can be described 
as follows: 

"too short": (~ U k) 2"2n+2 

"doesn't start with ~": ~.(~ U k) a(n) 

"doesn't start with enough blanks": 

#'(~ U k)2P-l°~'(~ U k) a(n), 

2 n 
"doesn't start with ~ q0 x": 

2 n ~ ~ 
~ "(q0 U q0"(~l U Xl'(X 2 U x2' (.. • (Xn. 1 

U Xn.l'X n) ...))))'(~ U k) a(n), 

"not enough blanks following x": 

~2n+n+2.(~ u x)2n-n-l.~.(~ u x) a(n), 

"missing the second ~": ~'2n+2"~'(~ U k) a(n). 

A word may also fall to be in Comps(x) because 

it "ends: wrong". These words can be descirbed as 
follows: 

ii. "doesn't halt in the accepting state qa 

2.2n+I 
(~U k)a(n).~. ((~ U k)-{~,qa]) .#, 

"doesn't end with @": (~ U k)a(n)'~. 

Finally, a word may fail to be in ComB(X) 

because the consecutive i.d.'s do not conform to 
the possible moves of ~. In particular, the defin- 
ition of ~ determines for every three symbols ~I' 

~2' ~3 E ~ a set N(~i~2~3) of words of length three 

such that if ~i~2~3 appears in a word in ComB(x), 



then only words in N(C~l~2Cr3) may appear one i.d. 

length to the right of crlc;2~3 • The words not in 

Comps(x) because they "move wrong" can now be des- 

cribed as follows: 

(~ U k)a(n).u.(~ U k) a(n) 

where 

U = U ~i'(Y2'~3"~ ° 2n-l" (~-N(c~icr2cT 3) ) 

cYi,~2,~3 
6Z 

The union of the sets given by the expressions 
above contains all words over ~ of length ~ a(n) 
except those in Comps(x). It also contains certain 

longer words, none of which however is longer than 

b(n) = 2.a(n) + 2.2 n + 5. Thus, the words which 
are "too long" are 

~a(n) + I • (~ U k) b(n)-a(n)'l. 

The regular-like expression E is thus simply 
x 

the union of the regular-like expressions corres- 
wr ,i pondlng to the words which "start ong , ."end 

wrong", "move wrong", or are "too long". T 

4. POLYNOMIAL TIME QUANTIFIERS 

In [I] we defined an analogue to the arithmetic 

hierarchy in which P plays the role of the recursive 

sets ~i was defined to be ~ and ~+I was defined 

as the family of sets of words accepted in non- 
deterministic polynomial time by Turing machines 

with oracles for sets in~. The analogy to the 

arithmetic hierarchy is made more explicit in the 
next theorem, which is stated without proof. 

Let P(x I .... ,Xk) be a predicate on words in 

for some ~. We say that P is polynomial time com- 

putable if [Xl~X2~ ... ~k I e(x I ..... Xk)} 

is a set of words recognizable in deterministic 
polynomial time where ~ is a symbol not in ~. 

Theorem 4.1. For k ~ I, aset of words A is in~ 

iff there is a deterministic polynomial time com- 
putable predicate P(X,Yl,Y2,...,y k) and a polynomial 
p such that 

%Theorem I was stimulated by John Brzozowski's 
remark that our use of Kleene * in [I] was very 
restricted and might therefore be removable. We 
are also grateful to Harry Hunt who pointed out 
that the function N used in [I] should actually 
have been a mapping from words to sets of words 
as in the construction given here. 

A = [x I ZYl VY2 ~Y3 "'" QkYk[P(X'Yl ..... Yk )]] 

where the quantifiers range over Yi 6 ~* such that 

lyll p(Ixl>. 
The following theorem was stated and proved in 

slightly weaker form in [i]. 

Theorem 4.2. For k ~ I, the set B k is Klog-Compl- 

ere in ~k" 

In fact, the construction given in [II] for 
converting an arbitrary propositional formula to 
disjunctive form in polynomial time while preser- 
vlng validity may be extended to show that the set 
of disjunctive (conjunctive) form formulas in B k 

is log-space complete when k is even (odd). 

It remains an open question whether the con- 

tainment of ~ ~ in ~ ~+I is proper. Nevertheless, 

believe the "hierarchy" of ~ classes is tech- we 

nleally useful for classifying the complexity of 

problems. In the next section we describe a word 

which is complete in ~,p. problem 
m 

The set Bco = 0 B k is the natural analogue to 

k=l 
the c0-Jump of the empty set in reeurslve function 
theory. The following theorem reveals a surprising 
relationship between the polynomial time hierarchy 
and polynomial space. 

Theorem 4.3. Bco is ~log-Complete in polynomial 
space. 

Proof. To show that polynomial space is ~log Bco, 

let ~ be a Turing machine which accepts some set 
w 

L c [0,I} in space K p(n) for some polynomial p. 
In the computation of ~ on input x, no instantan.- 
eous description is longer than 1 + p(Ixl). We 
choose an encoding of the states and symbols of 
into words in [0,I]*, so that any instantaneous 
description of ~ in its computation on input x will 
be a wordy£ [0,I]* such that IYl = q( x ) for some 
polynomial q depending on ~ p, and the encoding, 
but not depending on x. 

As in [I] z _[3], one can construct a Boolean 
formula AO,n(U,V ) where U = Ul, u 2 ..... Un and V = 

Vl,V2,...,v n are sequerces of Boolean variables 

and n = q(Ixl)such that 

AO, n(U,V) UlU2...u and VlV 2 ... v are the 
n n 

encodings of i.d.'s of ~ and 

VlV2...v follows from UlU2...u n n 
in at most one s tep  of  ~JJL 

Moreover, for fixed ~, the length of A0, n is 
bounded by a polynomial in n. 



By quantifying over some of the_variables, one 
can now construct formulas A k (U,V) for k ~ 0 
such that ,n 

,n (~,~) and VlV2...v n are A k ~ UlU2...u n 

the encodings of i.d.'s of ~I 
and VlV2...v n follows from 

• k 
UlU 2...u n ~n g 2 steps of !~. 

Moreover, the length of Ak, n(U,V ) is bounded by 

k+l times a polynomial in n. This follows by in- 
duction from the equivalence 

Ak+l,n(B,9) = (~)(V~)(V~)[((~=~ ^ ~ = 

v (~ = ~ ^ ~ = ~)) =A~,n~% ~)], 

where we have used U = Y as an abbreviation for the 

formula (u I ~ yl) A (u 2 ~ y2) A ... A (u n ~ yn). 

(We note the similarity of this construction to 
Sa~itch's proof that nondeterminlstlc space n is 
contained in deterministic space n2[12].) 

Now since ~ requires space ~ p, there is a 
constant c > I such that ~ accepts an input word x 

iff ~ accepts x in time ~ c p(Ixl). Let Ix(U ) be . 
a Boolean formula which equals one Iff UlU2...u n is 

the encoding of initial i.d. of ~ on x, and let 
F(V) be the Boolean formula which equals one iff 
VlV2...v n is the encoding of an accepting i.d. of 

~. Then, x 6 L ~ ~accepts x in ~ c P(IXT) steps 

= ( ~ ) ( Z ~ ) [ I x ( U )  A F(V) A Alog2c, p(Ixl),n(U,v)] . 

The Boolean formula on the righthand side of the 
above equivalence is of length bounded by a poly- 
nomial in Ixl, and can be rewritten as a formula 
E such that x 6 L = E E B by renaming the vari- 
X X 

ables appropriately. We shall leave it to the 
reader to convince himself that the functlonmapping 
x to E x is log-space computable. Hence L ~log B . 

It is also not hard to show that B is recognizable 

in deterministic linear space, which completes the 
proof. 

Essentially the same constructlon may be used 
to prove that polynomial space is ~log IEQ. A 

polynomial space upper bound on IEQ follows from 
the well-known fact that a first-order formula 
with n quantlfiers and no predicates other than 
equality is valid iff it is valid for domains of 
all cardinalities between 1 and n. 

Corollary 4.4. IEQ is ~log-eomplete in polynomial 
space. 

5. INTEGER EXPRESSIONS 

We shall prove in this section that N-MEMBER 
({U,+)) ~s ~. -co=pleta in ~ and that 

log 
N-INEQ({U,+}) is Nlog-eomplete in ~2. The latter 

is an example of ~ reasonably n~tural deelsion 

proD~em for which the ~ classes provide a precise 

complexity characterization. 

The proofs that N-INEQ({U,+,m]) and N-MEMBER 
({U,+,~)) are ~log-Complete in polynomial space 

involve a combination of the techniques used in 
Theorem 5.2 below and Theorem 4.2, but are too 
long to present here. They will appear in [13]. 

For simplicity we shall identify nonnegative 
integers with their binary representations, e.g., 
Ixl for x E N means the number of digits in the 
binary representation of x. 

Lenmma 5.1. N-MEMBER([U,+}) 6 o~. 

Proof. Let x be a nonnegatlve integer, and let E 
be an integer expression. Define a "proof" that 
(x,E) E N-MEMBER([U,+}) reeurslvely as follows: 

(x,x) is a proof of (x,x); if P1 is a proof of 

(Xl,El) and P2 is a proof of ~2,E2), then (Pi,P2) 

is a proof of (Xl+X2,(El+E2)); if P1 is a proof of 

(x,E), then P1 is also a proof of (x,(E U F)) and 

of (x,(F U E)) for any integer expression F. Let 
Q(x,E,P) be the predicate which is true iff P is a 
proof of (x,E). It is not hard to see that Q is 
computable in deterministic polynomial time, and 
that if Q(x,E,P). then IPI is bounded by a poly- 
nomial in Ixl + IEI. It follows that x E L(E) iff 
ZP[Q(x,E,P) and IP I ~ polynomial (Ixl + IEI)], so 

by Theorem 4.1, N-MEMBER({U,+}) E ~I =~ 

Theorem 5. I. N-MEMBER({U,+] ) is ~log-Complete 
in ~P. 

Proof. Karp [4] has shown that KNAPSACK ~log-COm- 

plete in ~, where KNAPSACK = {(al,a 2 ..... an,b) I 

n > O, a i 6 N for I ~ i ~ n, b 6 N, and i~ I alz i = 

b for some integers z i E [0,11 for I ~ i ~ n}. 

But (al,a2,...,an, b ) E KNAPSACK = 

(b,(a I U 0)+(a 2 U 0) +...+ (a n U 0)) E N-MEMBER 

((u,+}): 

Hence, KNAPSACK ~log N-MEMBER({U,+} ), which 

completes the proof. 

Theorem 5.2• N-INEQ([U,+~) is Klog-Complete in 

4 
Proof. A simple induction on the length of integer 
expressions implies that if L(E) ~ L(F), then there 
is a z E N such that z E L(E) ~ z ~ L(F), and Izl 
IEI + IFI. Hence, e(E) ~ L(F) ~ ~z[~Pi[Q(z,E,P~]= 

-~qP2[Q(z,F,P#]] where Q is the predicate defined in 



Lemma 5.1, and all quantifiers range over words 
whose length is bounded by a polynomial in IEI + 
IFI. Thus, Theorem 4.1 and standard manipulation 

of quantifiers implies that N-INEQ({U,+]) 6 ~2" 

To complete the proof, we shall show that B 2 

~log N-INEQ({U,+) ). 

Let A(Xi,X2) be a Boolean formula, which by the 

remark following Theorem 4.2 may be assumed to be 
in disjunctive form. 

For simplicity assume the variables in A are 
xi, j for i = 1,2 and I K j ~ n. Let D k be the set 

of literals (variables or their negations)in the 

k th disjunct of A for I K k ~ m. Let [G E D k] = I 

if G E Dk; [G E D k] = 0 if G ~ D k. For each liter- 

al G, define I(~) E N to be 

I(G) = k~l [G 6 Dklbk where b = 22+Fl°g2 n]. 

m bk ' 
Let a = k~l and for I ~ i ~ m let F i be the 

integer expression 

F i = (b i U 0) + (b i U 0) +...+ (b i U O) 

where the term (b i U 0) occurs 2n-I times. Finall~ 
define integer expressions 

n 
E 1 = na + k~l ((a-I(Xl;k)) U (a-I~-~l,k))), 

n m 
E 2 = (k~ I (l(x2, k) U l(-~2,k)))+ (i~l Fi)" 

mote that if y E L(E I) then y = k~l akbk where 

n K a k ~ 2n, and there is an assignment to the 

Boolean variables XI in A such that for i ~ k K m, 

a k = 2n iff no Xi literal in D k is assigned the 

value 0. Similarl[, for any assignment to the 
Boolean variables X 2 in A, there is a y E L(E 2) 

m akbk such that y = k~l where a k = 2n if some X2 

literal in D k is assigned value O, and a k may have 

any value < 2n otherwise. 

One can now show that 

A(XI'X2) ~ B2 ~ ~i ~2[A(XI'X2) = 0] 

L(Ei) c L(E2) 

((E 1 U E2),E 2) ~ N-INEQ 
( ( U , + ] ) .  

We note that the function mapping A(Xi,X2) to 

((E I U E2),E p) is log-space computable, which 
~Ompletes the proof. 

6. REGULAR-LIKE EXPRESSIONS OVER {01 

Regular-like expressions over [0] resemble 
integer expressions in that if we define for A c 

0 the set N(A) d~f [Ixl I x E A} c N, then N(Ai.A 2) 

= N(A) + N(B), N(-A) = N-N(A), etc. Using squaring 
and concatenation, one can construct for any n E N 
a regular-like expression E over [01 such that 
N(L(E)) = {hi and IEI is proportional to log2n, 

which yields a log-llnear reduction from integer 
expression problems to regular-like expression 

problems. For example, the proof that INEQ([0], 

[U,',2,~}) is ~log-COmplete in polynomial space is 

a simple corollary of the fact that N-INEQ([u,+,~]) 
is ~log-COmplete in polynomial space. A detailed 

proof will appear in [131. 

The contrast between regular-like expressions 
over [0~ and those over [0,I I is best illustrated 
by the ease involving the operations U, ", and 9. 
Inequivalence over [0,11 with these operations is 
enormously hard to decide, while inequivalence over 
[0) with these operations is trivial from our point 
of view, i.e., is decidable in deterministic poly- 
nomial tlme, because a regular-like expression of 
length n over [01 with operations U, ", ~ defines 
a finite set of words or the complement of a 
finite set of words of length at most n. Details 
will appear in [13]. 

When the squaring operation is not used, word 
problems for regular-like expressions over {01 seem 
to require somewhat different methods from either 
integer expressions or regular-like expressions 
over [0,I}. The following theorem is an example. 

Theorem 6.1. INEQ([0 I, [U,.,*}) is ~log-Complete 
in~ 

Proof. By "expression" in this proof we shall mean 
regular-like expression over [0} involving only 
the operations., U, *. 

To test whether L(E) # L(F) in nondeterminlstlc 
polynomial time, construct~ro~ expresslons ~ a~dF 
nondeterministic finite automata A E with at most 

!E I states and AFWlthat most IFI states. If 

L(E) ~ L(F), then standard results i~ ~utoma~a 
theory imply that there is an n ~ 2 |E| + 2 IF 

such that O n 6 L(E) = O n ~ L(F). Nondeterminis- 
tically "guess" the binary representation of n, 
and test whether there is a path in the transition 
graph of A E and A F of length n to accepting 

states. This latter test can be carried out deter- 
ministically in time bounded by a polynomial in 
Inl by successively squaring and multiplying the 
connection matrices for the transition graphs of 

A E and A F. The entire procedure thus can be 

carried out in nondeterminlstic time bounded by a 
polynomial in IEI + IFI. 

To prove completeness, let SAT be the set of 
satisfiable Boolean formulas in conjunctive form 
with exactly three literals per conjunct. Cook 
[3] has shown that~Klog SAT, and we shall show 



that SAT ~log INEQ([0], [U,',*}). 

Let A(X I) be a Boolean formula in conjunctive 

form with three literals per conjunct. Let C k be 

the set of literals in the k th conjunct, I ~ k ~ m. 
Say that A has n distinct variables, so that an 
assigmnent to the variables can be represented as 
a binary vector of length n. Let pl,P2,...,pn be 

the first n primes. If z 6 N is congruent to 0 or 
I modulo Pi for i ~ i ~ n, we shall say z satisfies 

A if the assigrmnent (z mod PI' z mod P2"'" z modp~ 

satisfies A. 

Let E 0 be the expression such that L(E0) = 

[ 0z I z E N does not encode an assigr~ent] = 

[ 0~ I (Zk ~ ~[z ~ 0(mOdPk) and z ~ I mod(Pk)] ]. 

n Pk'l 
E0 = kQ1 jQa [0J'(0Pk)*] 

For each conjunct Ck~ we construct an expression 

E k such that if 0 z E L(Ek) and z is an asslgr~nent 

then z does not assign the value 1 to any literal 

in C k. For example, if C k = [Xl, r, -~l,s' Xl,t] 

for 1 ~ r,s,t ~ n and r~s,t distinct~ let z k be 

the unique integer such that 0 K z k < prPsPt , 

z k ~ O(mod pr ), z k ~ 1 (mod p~), and z k ~ 0 (modPt), 

Then 

E k = 0Zk.(0PrPsPt) *. 

Now it is not hard to show that A(Xi) is sat- 

isfiable = (Zz 6 N)[z encodes an assigrm~ent to A 

and 0 z ~ L(E k) for I ~ k ~ m] ~ L(E 0 U k~ I E k) ¢ 
w 

0 . 

The reader can verify that the mapping from 

A(Xl) to (E 0 U k~ I Ek, 0") is log-space computable, 

which completes the proof. 

7. CONCLUSIONS AND OPEN PROBLEMS 

We have demonstrated that the inherent compu- 
tational complexity of a large selection of word 
problems from automata theory, logic and arithmetic 
can be characterized precisely. Our results to 
date are summarized in the table in section 2. 

We believe that the methods used here will have 
wide applicability in computational mathematics. 
Our results already imply that previous efforts to 
find efficient procedures for testing equivalence 
of regular expressions or minimizing nondetermin- 
istic finite automata (cf. [14], [15], [16]) were 
foredoomed• Recent studies by ourselves and co- 
workers of decision procedures for logical theories 
show that our methods are applicable to nearly all 
of the classical decidability results in logic,and 

that moreover with the exception of the proposi- 
tional calculus and some theories resembling the 
first order theory of equality, all these decidable 
theories can be proved to require exponential or 
greater time• Although certain of the word problems 
considered in this paper are somewhat arbitrarily 
constructed, we have studied them in the hope that 
the methods of proof will extend to algebra, topo- 
logy and other areas where decision procedures 
arise, and will curtail wasted effort in searching 
for efficient procedures when none exist. 

One can easily generate several dozen word 
problems which are variants of those considered in 
this paper by considering different subsets of the 
operations we have defined or inventing similar 
ones. We hesitate to reco~mlend this entire class 
of problems as an interesting research topic, but 
two problems we are interested in are 

Open Problem: Characterize the computational 

complexity of INEQ([O}, [U,',*,2]) and INEQ([O], 
[U,',*,~]). In particular are they recognizable in 

.2 n 

time K 22.. "~k for any fixed k? We conjecture 
an affirmative answer to the latter question by 
reducing these problems to Presburger arithmetic 
(cf. 17). 

Define polynomial expressions over finite sets 
o_~ integers recursively as follows: (Xl,X2,...,x n) 

is an expression and ~(Xl,...,Xn)) = Ix I .... ,Xn] 

• are nonnegative integers where n ~ I and Xl,.. ,x n 

expressed in binary notation; if E and F are 
expressions and n E N is expressed in binary nota- 
tion, then (E + F), (E-F), (ExF)I and (E) n are 
expressions and L((E+F)~ = [x+y ~ x 6 L(E) and y 6 
L(F)}, L((E-F)) ~ [x-y | x 6 L(E) and y 6 L(F)], 
L((EXF)) = [xXy I x 6 L(E) and y E L(F)}, and 

L((E) n) = [ xn I x 6 L(E)]. 

Open problem: Characterize the computational 
complexity of the equivalence problem for poly- 
nomial expressions over finite sets of integers• 

I. 

2. 

3. 

4. 

5. 
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