
Dan Noé

University of New Hampshire / VeloBit

 A review of how the CPU works

 The operating system “kernel” and when it runs
◦ User and kernel mode

◦ Device drivers

 Virtualization of memory
◦ Virtual memory

◦ Paging

 Virtualization of CPU
◦ Threads, processes, programs, tasks and Cores

 Virtualization of Disk
◦ Filesystems

 Memory (RAM) contains instructions coded in
binary and space for data storage

 The CPU has multiple “registers” for
temporary store

 The “instruction pointer” register points to
the next instruction to be executed

 Interrupts
◦ When a piece of hardware needs something it

causes an interrupt which makes execution jump to
a predetermined location

 In order to continue execution after an
interrupt the machine context is saved:
◦ Save the contents of all registers (including special

registers) into memory: the “Machine Context”
◦ Update the program counter so the next instruction

is a predetermined location (“Interrupt Handler”)

 If execution is interrupted and the context is
saved execution can be resumed later without
even knowing!

 When an interrupt occurs the interrupt
handler runs in “kernel mode”

User Mode Kernel Mode

 Application code runs
in this mode

 Limited privileges
◦ Cannot execute all

instructions, memory
access limited

 Cannot transition into
kernel mode without
an interrupt
◦ This interrupt is called a

“context switch”

 System starts in this
mode

 Interrupt handlers run
in this mode

 Unlimited privileges
◦ Access all memory and

hardware devices
◦ Execute any CPU

instruction
 Can transition into

user mode with an
instruction

 Term for the collection of code which forms
the core of the Operating System

 Kernel code runs first at system boot time

 After the first user mode code runs, the
kernel runs only as a result of interrupts

 “Operating System” also includes user mode
components
◦ User Interface components: Shells, explorer

◦ System services

 Kernel code that interacts with hardware devices

 Sends commands to device
◦ Network driver: Send data to remote computer

◦ Disk driver: Begin write or read or read operation

◦ Video driver: Display something on screen

 Handles interrupts by that device
◦ Network driver: Interrupt occurs when incoming data

arrives

◦ Disk driver: Interrupt occurs when operation is complete

◦ Human interface device: Keyboard press causes interrupt

 But how does a user application request
something from the kernel?

 It causes an interrupt!

 Old way: Software interrupt instruction
◦ A software interrupt (also called a “trap”) is

triggered by a special instruction

 Newer way: Special “sysenter” or “syscall”
instruction
◦ Allows some shortcuts by the CPU and kernel for

better performance

A key concept: Each user
application runs on the CPU as
though it has full access to the
system through virtualization of
resources

 Each program acts as though it has universal
access to the memory
◦ Without this life would be difficult!

 Virtual Memory is the solution

 Address spaces
◦ Physical addresses – size is the amount of physical

RAM

◦ Virtual addresses – size depends on the size of a
pointer (32 or 64 bits)

 32-bit system: 4GB of virtual address space

 64-bit system: 16 Exabytes!

 Physical address space is divided into 4 kilobyte
Page Frames

 Virtual address space is divided into 4 kilobyte
Pages
◦ 32 bit virtual address 0xdeadbeef
◦ Page number
◦ Offset within page

 A page table is maintained in memory for each
program. It maps virtual Page Frame -> Physical
Page

 For each memory access the CPU looks up the
virtual address and translates it into a physical
address

 The Page Fault (a trap/interrupt)
◦ A virtual memory address is accessed which does

not have a valid or resident physical page

 Demand Paging and nonresident pages

 File backed pages

 Shared pages
◦ Copy on Write

 Making it fast: Caching and the Translation
Lookaside Buffer (TLB)

 If a page has been resident in memory and
modified then it is marked “dirty”

 If a dirty page is backed by a disk file then it
must be written out (flushed) eventually

 If there are no free page frames the kernel
can old flush pages to disk and evict them
making them nonresident.

 Insufficient memory prompts “thrashing” and
extremely poor performance

 Tasks: Threads, Processes, Programs,
Applications

 Cores: Multiprocessing, Multiple Cores,
Multithreading

 CPU Scheduling maps Tasks to Cores
◦ Much like virtual memory maps virtual addresses to

physical!

 The Scheduler decides what task will run next
after servicing an interrupt or system call

 Time to execute one CPU instruction: 0.4
nanoseconds

 Time to retrieve data from main memory: 18
nanoseconds

 Time to retrieve data from disk: 8+
milliseconds (8,000,000 nanoseconds)

 Time to retrieve data from California server:
70 ms (70,000,000 nanoseconds)

 A CPU which executes one instruction per
second would take about 231 days to seek
the hard drive!

 Most tasks spend most of their time waiting
for IO

 The scheduler will allow CPU bound (or other
IO bound tasks) to run while waiting

 A typical program might only run hundreds of
instructions before blocking on more IO

 If no tasks are ready to run the CPU will
instruct the processor to save power

 A timer interrupt fires regularly to interrupt
any CPU bound tasks

 User applications cannot write directly to the
disk hardware

 Instead, the OS organizes files using a
filesystem and allows programs to access the
disk through system calls

 User programs use a standard interface to
name, read, and write “files”. The filesystem
translates this into actual disk block
operations.

 The difference between main memory and
disk access latency means that the OS must
cache disk data aggressively

 Leverage virtual memory with a Page cache:
◦ Each file opened by a user program is loaded by

mapping file backed pages

◦ Pages from the file are loaded on demand when a
page fault occurs

◦ Reads and writes are memory operations. The
pages will be marked dirty if modified

Hypervisors, mobile devices,
etc.

 VMWare, Parallels, VirtualBox, Xen, KVM, and
Hyper-V are examples of “hypervisors” which
are Operating System kernels which can run
other operating systems

 Same concepts apply!

 Interrupts are initially serviced by the
Hypervisor then control is passed to guest
operating system kernel

 Desire for low power consumption means the
CPU should be powered off as much as
possible

 Memory pressure means that while there may
be “multitasking” applications can be killed at
any time

 Cooperative multitasking/state saving helps
◦ Callbacks to save state

◦ Save to persistent storage immediately

 Different paradigms for file storage

 An Operating System is composed of the
“Kernel” and “user space” utilities

 The “Kernel” is the core code which provides
virtualization of resources. It has several key
components:
◦ Virtual memory manager

◦ CPU scheduler

◦ Filesystems / block layer

◦ Networking

 Wikipedia

 Learn about Linux Kernel: LWN.net,
kernelnewbies.org

 Install Linux (free) in VirtualBox (free – runs
on top of Windows)
◦ Make modifications to the kernel and the worst you

do is crash your virtual machine!

 Explore the Linux kernel source:
http://lxr.linux.no

