How Operating Systems
Work

Dan Noeé
University of New Hampshire / VeloBit




Topics

» A review of how the CPU works

» The operating system “kernel” and when it runs
- User and kernel mode
> Device drivers
» Virtualization of memory
> Virtual memory
- Paging
» Virtualization of CPU
- Threads, processes, programs, tasks and Cores
» Virtualization of Disk
> Filesystems




Review: How the CPU works

» Memory (RAM) contains instructions coded in
binary and space for data storage

» The CPU has multiple “registers” for
temporary store

» The “instruction pointer” register points to
the next instruction to be executed

» Interrupts

- When a piece of hardware needs something it
causes an interrupt which makes execution jump to
a predetermined location




How the CPU works: Interrupts

» In order to continue execution after an
interrupt the machine context is saved:

- Save the contents of all registers (including special
registers) into memory: the “Machine Context”

- Update the program counter so the next instruction
is a predetermined location (“Interrupt Handler”)

» If execution is interrupted and the context is
saved execution can be resumed later without
even knowing!

» When an interrupt occurs the interrupt
handler runs in “kernel mode”




User and Kernel Mode

» Application code runs » System starts in this
in this mode mode
» Limited privileges » Interrupt handlers run
- Cannot execute all in this mode
instructions, memory » Unlimited privileges
access limited > Access all memory and
» Cannot transition into hardware devices
kernel mode without > Execute any CPU
an |nterrupt InStrUCtIO-n. \
> This interrupt is called a » Can tranSItlon Into
“context switch” user mode with an
Instruction




Kernel

» Term for the collection of code which forms
the core of the Operating System

» Kernel code runs first at system boot time

» After the first user mode code runs, the
kernel runs only as a result of interrupts

» “Operating System” also includes user mode
components

- User Interface components: Shells, explorer
- System services




Device Drivers

» Kernel code that interacts with hardware devices

» Sends commands to device
- Network driver: Send data to remote computer
> Disk driver: Begin write or read or read operation
> Video driver: Display something on screen

» Handles interrupts by that device

- Network driver: Interrupt occurs when incoming data
arrives

> Disk driver: Interrupt occurs when operation is complete
- Human interface device: Keyboard press causes interrupt




System call

» But how does a user application request
something from the kernel?

» It causes an interrupt!

» Old way: Software interrupt instruction

- A software interrupt (also called a “trap”) is
triggered by a special instruction

» Newer way: Special “sysenter” or “syscall”
Instruction

- Allows some shortcuts by the CPU and kernel for
better performance







Virtualization of Memory

» Each program acts as though it has universal
access to the memory
- Without this life would be difficult!

» Virtual Memory is the solution

» Address spaces

- Physical addresses - size is the amount of physical
RAM

> Virtual addresses - size depends on the size of a
pointer (32 or 64 bits)

- 32-bit system: 4GB of virtual address space

- 64-bit system: 16 Exabytes!



Paging

» Physical address space is divided into 4 kilobyte
Page Frames

» Virtual address space is divided into 4 kilobyte
Pages
- 32 bit virtual address Oxdeadbeef
- Page number
- Offset within page

» A page table is maintained in memory for each
program. It maps virtual Page Frame -> Physical
Page

» For each memory access the CPU looks up the
virtual address and translates it into a physical
address




Paging

» The Page Fault (a trap/interrupt)

- A virtual memory address is accessed which does
not have a valid or resident physical page

» Demand Paging and nonresident pages
» File backed pages

» Shared pages
- Copy on Write

» Making it fast: Caching and the Translation
Lookaside Buffer (TLB)




Dirty Pages

» If a page has been resident in memory and
modified then it is marked “dirty”

» If a dirty page is backed by a disk file then it
must be written out (flushed) eventually

» If there are no free page frames the kernel
can old flush pages to disk and evict them
making them nonresident.

» Insufficient memory prompts “thrashing” and
extremely poor performance




CPU Scheduling

» Tasks: Threads, Processes, Programs,
Applications

» Cores: Multiprocessing, Multiple Cores,
Multithreading
» CPU Scheduling maps Tasks to Cores

> Much like virtual memory maps virtual addresses to
physical!
» The Scheduler decides what task will run next
after servicing an interrupt or system call




|O Bound vs. CPU Bound tasks

» Time to execute one CPU instruction: 0.4
nanoseconds

» Time to retrieve data from main memory: 18
nanoseconds

» Time to retrieve data from disk: 8+
milliseconds (8,000,000 nanoseconds)

» Time to retrieve data from California server:
70 ms (70,000,000 nanoseconds)

» A CPU which executes one instruction per
second would take about 231 days to seek
the hard drive!




|O Bound vs. CPU Bound tasks

» Most tasks spend most of their time waiting
for 10

» The scheduler will allow CPU bound (or other
IO bound tasks) to run while waiting

» A typical program might only run hundreds of
instructions before blocking on more 10

» If no tasks are ready to run the CPU will
instruct the processor to save power

» A timer interrupt fires regularly to interrupt
any CPU bound tasks




Filesystems: More virtualization!

» User applications cannot write directly to the
disk hardware

» Instead, the OS organizes files using a
filesystem and allows programs to access the
disk through system calls

» User programs use a standard interface to
name, read, and write “files”. The filesystem
translates this into actual disk block
operations.




Caching

» The difference between main memory and
disk access latency means that the OS must
cache disk data aggressively

» Leverage virtual memory with a Page cache:
- Each file opened by a user program is loaded by
mapping file backed pages
- Pages from the file are loaded on demand when a
page fault occurs

- Reads and writes are memory operations. The
pages will be marked dirty if modified







Virtualization of OS: Hypervisor

» VMWare, Parallels, VirtualBox, Xen, KVM, and
Hyper-V are examples of “hypervisors” which
are Operating System kernels which can run
other operating systems

» Same concepts apply!

» Interrupts are initially serviced by the
Hypervisor then control is passed to guest
operating system kernel




Mobile devices

» Desire for low power consumption means the
CPU should be powered off as much as
possible

» Memory pressure means that while there may
be “multitasking” applications can be killed at
any time

» Cooperative multitasking/state saving helps

- Callbacks to save state
- Save to persistent storage immediately

» Different paradigms for file storage




Review

» An Operating System is composed of the
“Kernel” and “user space” utilities

» The “Kernel” is the core code which provides

virtualization of resources. It has several key
components:

> Virtual memory manager
> CPU scheduler

> Filesystems / block layer
- Networking




Learning more

» Wikipedia
» Learn about Linux Kernel: LWN.net,
Kernelnewbies.org

» Install Linux (free) in VirtualBox (free - runs
on top of Windows)

- Make modifications to the kernel and the worst you
do is crash your virtual machine!

» Explore the Linux kernel source:
http://Ixr.linux.no




