A set is any collection of elements. For 2 sets A and B , their union $A \cup B$ is the set of all elements in either of them, and their intersection $A \cap B$ is the set of all elements in both of them.

Sets may be defined using the following notation: (| means "such that")

$$
S=\{f(x) \mid x \text { satisfies condition BLAH }\}
$$

For example,

$$
\begin{aligned}
\{0,1,4,9,16, \ldots\} & =\left\{x^{2} \mid x \text { is an integer }\right\} \\
\{1,-1\} & =\left\{x \mid x^{2}=1\right\}
\end{aligned}
$$

A function $f: S \rightarrow T$ takes each element from a set S and outputs an element from T . S is called the domain, and T the range. The most common examples are functions on the reals $\mathbb{R} \rightarrow \mathbb{R}$ (like $f(x)=x^{2}$, etc.). A function is one-to-one (bijective) is each element is sent to a different element (for example, $f(x)=2 x$ is one-to-one, but $f(x)=x^{2}$ is not because $f(1)=1=f(-1)$.) The inverse of a function f "undos" the operation (if $f(x)=x+1$, then $f^{-1}(x)=x-1$), but it is a function only if f is one-to-one. For example, over the positive reals, if $f(x)=x^{2}$, then $f^{-1}(x)=\sqrt{ }(x)$, but this is not true over all reals because BOTH $u= \pm \sqrt{ } x$ give $f(u)=x . f g(x)$ means the function defined by first carrying out g , then carrying out f, i.e. $f(g(x))$. As an exercise, convince yourself that $(f g) h=f(g h)$.

A polynomial is an expression constructed using variables, where only multiplication by constants, adding/subtracting, and raising to nonnegative powers is allowed, for example, $x^{3}+3 x^{2}+3 x+1$.

Arithmetic can be defined for sets besides real numbers. When we take integers modulo a number n, we take the remainder of whatever result we get after division by n . In other words, we do not distinguish between numbers that are a multiple of n away from each other. For example modulo 3 (in \mathbb{F}_{3} or $\mathbb{Z} / 3 \mathbb{Z}$),

$$
\begin{gathered}
1+2=0 \\
2 \times 2=1 \\
-1=2 \\
2^{-1}=2 \text { (since } 2 \times 2=1 \text {) }
\end{gathered}
$$

Note that in this example, addition and multiplication still satisfy the commutative, associative, and distributive laws. You can even find inverses for addition and multiplication, except the inverse of 0 is not defined. Any set with,$+ \times$ defined, satisfying these rules, is called a field.

Summation notation

$\sum_{i=1}^{n} f(i)$ means $f(1)+f(2)+f(3)+\cdots+f(n)$. For example, $\sum_{i=1}^{5} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}$. The sum may also be written with a condition on the bottom:

$$
\sum_{1 \leq i \leq 5, i} i^{2}=1^{2}+3^{2}+5^{2}
$$

Sum the expression to the right over all the cases where the bottom conditions are true.

See if you understand this identity:

$$
\left(\sum_{i=1}^{n} x_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}+2 \sum_{1 \leq i<j \leq n} x_{i} x_{j}
$$

The sum on the right means "sum over all pairs (i,j) satisfying $1 \leq i<j \leq n$ " For example, when $n=3$ this says:

$$
\left(x_{1}+x_{2}+x_{3}\right)^{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+2\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)
$$

(which is true by expanding the left-hand side.)

Trigonometry

The sine and cosine of an angle θ are the x and y coordinates when we rotate the point $(1,0)$ by θ around the origin:

In combinatorics, a graph is a collection of vertices, some pairs of which can be connected by edges:

Only which pairs are connected is important; the shape is not. We may use graphs to represent relationship between objects, as in: There is a group of 5 people numbered $1,2,3,4,5$. Represent the
people as vertices, and connect two vertices if the corresponding people are friends. So above, people 2, 3,4 , and 5 are all mutual friends, but 1 is only friends with 2.

A $m \times n$ matrix is a table with m rows and n columns, filled with numbers. To add matrices (of the same dimensions), just add the corresponding entries. When multiplying by a scalar (constant), multiply every term by the scalar. For example,

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
-1 & -3 \\
-5 & -7
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-2 & -3
\end{array}\right], 2\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
$$

