Introduction to
Organic Chemistry
HSSP
Myriam Taibi
July 11, 2010
Periodic Table
Bonding in Carbon

• Carbon-12
 – $1s^2\ 2s^2\ 2p^2$
 – How many valence electrons in carbon? How can you tell?

• Organic Chemistry
 – Study of carbon containing compounds and its properties
 – Synthesis
Quick Review

• Covalent Bonds
 – Sharing of electrons between atoms in a molecule

• Octet Rule
 – Atoms combining together to give stable structure with 8 valence electrons in outer shell
Quick Review Contd.

• **Valence Shell Electron Pair Repulsion Theory (VESPR)**
 – Geometry of compound determined by electrostatic repulsion of valence electrons

• **Hybridization Theory**
 – Mixing of atomic orbitals to form new hybrid orbitals

• **Molecular Orbital Theory (MO)**
 – Determining molecular structures with moving electrons
Hybridization

\(s \text{ orbital} + p \text{ orbitals} \rightarrow sp^2 \text{ hybrid orbitals (trigonal planar)} \)
Methane – CH_4

- **Valence Shell Electron Pair Repulsion model (VSEPR)**
 - Carbon has four valence electrons
 - Forms 4 bonds
 - Tetrahedral

- **Hybridization**
 - sp^3 orbitals

Structural formula

H

C

H

H

Lewis Dot Structure

H : C : H

H

H

109.5
Resonance

• Movement of delocalized electrons in compound that gives more than 1 Lewis Structure
 – Major & Contributing structures
 – Gives compound stability!

\[
\begin{align*}
\text{Carbonate ion} &= \overset{-\text{O}}{\text{C}}\overset{-\text{O}}{\text{O}}^- \quad \overset{-\text{O}}{\text{C}}\text{O} \quad \overset{-\text{O}}{\text{C}}\overset{-\text{O}}{\text{O}}^- \\
\end{align*}
\]
Resonance

• Conjugation
 – System where atoms are covalently bonded with alternating single and multiple bonds

 benzene or

 – Can have atoms with electrons available in p-orbitals (like oxygen)

 furan
Benzene

P-orbitals (lobes on top) mix together to form delocalized “donut” from moving e-
Same occurs for bottom lobes of p-orbitals