HUMANOID ROBOTS

Marcelo Anjos presented

Practical in Humanoid Robotics

Marcelo dos Anjos

University National of Asuncion

About Me

- Maker for hobby
 - Electronic Engineer
 - Software and Computer Engineer
 - Finishing my PHD in Computer Sciences

Motivation

Humanoid refers to any being whose body structure resembles that of a human: head, torso, legs,arms, hands.

But it is also a robot made to resemble a human both in appearance and behavior

Humanoid Robot Applications

Why do we need a motion specification?

- Difficulties for researchers in robotics:
 - Industrial copyright
 - Programs are not re-usable in different robot families, even different versions of same robot families
 - Have to choose OS based on the drivers provided
 - Not easy to share a robot remotely with other collaborators in different locations

Project goals OpenSource OpenHardware

- Whatever: (cross-model)
 - Provide a network-enabled interface for independent of the controller libraries
 - Access to other robots & simulators.
- Whoever: (cross-platform)
 - User interface must be cross-platform: support Linux, Mac OS X and Windows.
- Wherever: (cross-network)
 - Good quality of service across the Internet.

Basic Components of Humanoid

<u>Sensors</u>

- Proprioceptive sensors
- Exteroceptive sensors
- Proximity sensors
- Tactile sensors
- Vision sensors
- Sound sensors

Planning and Control

Humanoid

Actuators

- Hydraulic and electric actuators
 - DC motor
 - □ Stepper motor
 - A Servo motor
- Piezoelectric actuators
- Ultrasonic actuators
- Pneumatic actuators

Architecture

Locomotion – Walking Video

LEGGED LOCOMOTION

- Legged locomotion is much easier to accomplish (and much safer to develop and test) on smaller humanoids.
- The SDR-4X was recently developed by Sony as a domestic robot capable of handling uneven surfaces and stairs on the fly.
- Honda's P3 humanoid.
- Honda now has another smaller and lighter android known as P3.

Locomotion

Degree of Freedom (DOF)

➤The degrees of freedom is the number of independent parameters that define its configuration.

➤The term is widely used to define the motion capabilities of <u>robots</u>.

➤Consider a robot arm built to work like a human arm.

Prices for Human Sizes Robots

Poppy Child Kit
+- 9.000 u\$\$

- Big Size Servo Motor
- 20 x 2.000 U\$\$ = 40.000 u\$\$.

Parts - Kits and Prices.

Aluminum

com.

Servo Motor

Micro controlled Servo Motor with PID

PID is the most commonly used servo control algorithm:

- <u>P</u>roportional
- <u>Integral</u>
- <u>D</u>erivative

PID systems can be understood by way of analogous physical models.

Micro controlled Servo Motor with PID

Servo Motor – Video and Practical

Main Board Control

Main Board Control - Practical

3D Choreography - Practical

Sequencer – Practical

Dancing – Video and Practical

Artificial intelligence (AI) is a branch of science, which deals with helping machines find solutions to complex problem in a more human like fashion.

Borrowing characteristics from human intelligence, and applying them as algorithm in a computer friendly way.

Recognition Technology

- 1. Recognition of moving objects
- 2. Posture/gesture recognition
- 3. Environment recognition
- 4. Sound recognition
- 5. Face recognition.

Sound Recognition

Many Robots can distinguish between voices other sounds.

 $_{e_{E}}$ He can respond to his name, face people when being spoken to, and recognize sudden, unusual sounds such as that of a falling object or a collision, and face in that direction.

Facial Recognition

Many Robots has the ability to recognize faces, or the human being is moving.

 $_{\neq E}$ It can individually recognize faces. Once they are registered it can address them by name.

Architecture - Specification Standard

Architecture - System Overview

Architecture - Robotalk Server

Architecture - CClientConnection

Architecture - CClient

Architecture - Communication Modes

Direct mode:

blocking & instantaneous, for debug purposes

Delay mode:

nonblocking, instantaneous or delay

Playback mode:

nonblocking, adaptive caching based on channel quality

Broadcast mode:

periodic query feedback

Conclusions

- Motivations
- System Structure
- Four Network Command Modes
- Future Extensions
 - Exclusive control
 - Data channels
 - Controlling multiple humanoid robots
 - Virtual humanoid robots

Conclusion

Conclusion

Conclusion

References

- == H. Kitano and H. Asada, "The RoboCup humanoid challenge as the millennium challenge for advanced robotics," <u>Advanced Robotics</u> 13(8) (2000) 723-736.
- == C. Zhou and Q. Meng, "Dynamic balance of a biped robot using fuzzy reinforcement learning agents," <u>Fuzzy Sets and Systems</u> 134(1) (2003) 169-187.
- == <u>http://www.davidgeer.com/artificial-intelligence-humanoids-david-geer.pdf</u>
- == <u>http://plen.jp/playground/wiki/about</u>
- == <u>www.airspacedefense.org</u>
- == All CODES in

https://github.com/splash2018

Thank you!

Contact

== All CODES in

https://github.com/splash2018