Al and the Future of Theoretical Physics

Christian Ferko

Northeastern University and IAIFI, the
Institute for Artificial Intelligence and Fundamental Interactions

Splash 2025
Massachusetts Institute of Technology
March 15, 2025

Christian Ferko (Northeastern & IAIFI) Al and the Future of Theoretical Physics March 15, 2025



“Attention is all you need.”

Much innovation in Al has been driven by neural networks and specifically
transformers used in large language models (LLMs) like ChatGPT.
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Remarkably, models like OpenAl's Sora can now produce high-definition,
realistic video from a simple text prompt. And reasoning models like

03-mini can now solve most PhD-level physics problems correctly.
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https://arxiv.org/abs/1706.03762
https://openai.com/index/sora/

Institute for Al and Fundamental Interactions.

Al is the most groundbreaking technological advance of our lifetimes, and
it will impact all aspects of our life. But in today's talk, | would like to
focus specifically on the interplay between Al and physics.

The NSF Al Institute for Artificial Intelligence
and Fundamental Interactions (IAIFI)

Deep Learning (Al) + Deep Thinking (Physics) = Deeper Understanding

| currently work for IAIFI, which brings together researchers who are
combining Al and physics in order to generate new insights in both fields.
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Synergy in both directions.

The interaction between these two fields goes both ways: we can use Al
for physics, but also physics for Al.

Apply physics techniques to understand models

SN

Physics Al

Apply Al tools to solve problems

Roughly speaking, the main ideas of these two directions are:

© It is hard to understand why “black box" models like neural networks
work, but the conceptual framework of theoretical physics gives clues.

@ Many problems in theoretical physics are extremely difficult, so
applying Al techniques gives us extra problem-solving power.
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Goal: talk about the back-and-forth between Al and physics, and lay out
my vision for how Al will radically change the way that we do science.

The plan is as follows:
VI Part 1: Introduction and motivation.
[J Part 2: Neural networks and quantum field theory (physics for Al).
[J Part 3: Learning the geometry of extra dimensions (Al for physics)

[J Part 4: 10,000 Einsteins and the future of science.
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Part 2: Neural networks and quantum field theory

(physics for Al).
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Hopfield and Hinton.

We begin our story with the 2024 Nobel Prize in Physics.
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John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES

But why award the prize in physics? The reason is that the tools which
inspired their work come from theoretical physics (statistical mechanics).
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The Hopfield network and the Ising model.

Hopfield's work — later extended by Hinton — is closely related to the Ising
model in physics, which describes the behavior of electron spins in a
magnetic material like iron. Spins can point “up” or “down"”.

Interaction )
strength: J Weight: W

(a) Ising Model (b) Hopfield Model

In the Ising model, spins prefer to align with their neighbors to minimize
their energy. The strength of this preference is controlled by a number J.
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Exploring the energy landscape.

. INPUT PATTERN
Memo ries are Stored When the trained network is

in a landscape fed with a distorted or

incomplete pattern, it can
be likened to dropping a

000

John Hopfield's associative memory stores

3 ; ball down a slope in this
information in a manner similar to shaping a landscape
landscape. When the network is trained, it
creates a valley in a virtual energy landscape
for every saved pattern.
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The ball rolls until it reaches a place
where it is surrounded by uphills. In the
same way, the network makes its way
towards lower energy and finds the
closest saved pattern.
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Connecting neurons and fields.

Hopfield and Hinton's work is the first example of a relationship between a
neural network and a field theory.

In physics, a field is a mathematical function that assigns a number to
each point in space and time. That number can represent the spin of an
atom, as in the Ising model, but there are many other examples.

Physical Scope
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In the standard model of particle physics, there is a value of the electron
field at each point in space and time, another value for the Higgs field, etc.
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An algorithm inspired by the brain.

A neural network is a collection of nodes called neurons which are
connected by edges. Here is a feedforward network with many layers:

Input layer | Hidden layers i Output layer
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The neural network - field theory correspondence.

In at least one example, a field theory (the Ising model) is related to a
neural network (the Hopfield model). Are there other examples?

y | |
B) Output

Yes! Surprise: as you make the “width” of any neural network larger and
larger, it becomes mathematically equivalent to a free field theory.
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https://en.wikipedia.org/wiki/File:Infinitely_wide_neural_network.webm

Using field theory to understand Al.

Physicists have developed an enormous set of tools for studying field
theory. The NN-FT correspondence means that we can also apply this
toolkit to understand the behavior of neural networks!

Unitarity in Neural Network Field Theories

Christian Ferko®” and James Halverson®”
@ Department of Physics, Northeastern University, Boston, MA 02115, USA

b The NSF Institute for Artificial Intelligence and Fundamental Interactions

c.ferko@northeastern.edu, j.halverson@northeastern.edu

This is an example of physics for Al. Work by IAIF| researchers, including
Jim and myself, is ongoing in this exciting area.
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Part 3: Learning the geometry of extra dimensions

(Al for physics).
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Quantum gravity.

In the last 50 years, we learned how to combine general relativity with the
principles of quantum mechanics using the framework of string theory.

General String | Quantum

Christian Ferko (Northeastern & IAIFI) Al and the Future of Theoretical Physics March 15, 2025 14 /25



Christian Ferko (Northeastern & IAIFI)

Strings as fundamental constituents.

Within string theory, all of the fundamental particles that we learn about —
electrons, the quarks that make up protons, and even the photons which

are particles of light — are simply strings vibrating in different patterns.
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Extra dimensions.

For mathematical consistency, (super)string theory requires ten spacetime
dimensions, but we seem to observe only four (3 space, 1 time).

The remaining 6 dimensions must be curled up into a tiny space, small
enough to evade detection. We often choose this space to be a Calabi-Yau
manifold (pictured above) due to their convenient theoretical properties.
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The geometry of Calabi-Yaus.

To make physical predictions about string
theory with a particular shape for the extra
dimensions, we need some mathematical
information about the geometry of the
curled-up space (namely the metric).

For many years, this was impossible! We
could prove the existence of a metric on a
Calabi-Yau, but didn’t know how to find it.

Then a colleague of mine at Northeastern,
Fabian Ruehle, applied Al to this problem.
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Machine learning Calabi-Yau metrics.

With collaborators, Fabian trained a neural network to learn the metric on
a CY manifold. They did this by asking the network to minimize certain
quantities which need to be zero for mathematical consistency of the CY.

Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning

Lara B. Anderson, Mathis Gerdes, James Gray, Sven Krippendorf, Nikhil Raghuram, Fabian Ruehle

We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first ime complex structure moduli dependence. Our new methods furthermore improve existing
numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string
compactifications such s the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the

SYZ conjecture. In the case of SU(3) structure, our machine leaming approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and
SU(3)-structure manifolds based on a one-p: family of quintic inP*

This is an example of Al for physics and is a major breakthrough!

For the first time, we can use concrete numerical data to make specific
predictions about string theory given a choice for the extra dimensions.
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Part 4: 10,000 Einsteins and the future of science.
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Leveling up our physics abilities.

We have seen that Al for physics is a “power-up” that allows us to tackle
problems that would otherwise be too difficult.

theoretical
physicists

Can Al be a skill-leveler for theoretical physics?

humans
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In the next few years, Al-assisted science might make all researchers more
powerful, leading to 10,000 Einsteins. But what about in the long term?
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LLMs have been growing about 10 times more powerful each year, and
GPT4 probably has more parameters than the human brain.
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Recursive self-improvement.

One idea — attention — was the spark that ignited recent progress in LLMs.

Could Al discover the next big idea that leads to massive progress in Al?

It seems plausible — GPT4 (or 4.5) is already more creative than, and can
code better, than most humans. GPT5 will be much better.
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Once this happens, we reach the point where Al can improve itself.
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Can humans ever understand the theory of everything?

It might be that we can never fully understand the implications of string
theory because we are limited by our brains. After all, no amount of careful
instruction and practice would ever succeed in teaching a cat to play chess.

But even so, a super-intelligent self-improving Al might be able to
understand it. In the far future, science may consist of attempting to learn
what we can from an Al that understands reality better than we ever will.

Christian Ferko (Northeastern & IAIFI) Al and the Future of Theoretical Physics March 15, 2025 23 /25



Conclusion.
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We live in the dawn of the Al era.

We are fortunate to be alive at the exact crossover point where the
complexity of Al models has just exceeded that of the human brain.

As we continue to push for more powerful Al models, we can expect:

@ the intellectual toolkit of the theoretical physicist will give us deeper
insights into how and why Al works;

@ the awe-inspiring power of Al models will allow us to make serious
progress in understanding the fundamental nature of reality; and

© once Al learns to improve itself, we will see models that can perform
science research on their own and explain the results to us.

We may even live to see the end of human-driven science. But whether
this is a good thing or a bad thing is a topic for another talk.

Thank you for your attention!
Email cferko@alum.mit.edu with questions.
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