Introduction to Probability and Inference

Alexandra Ding, HSSP Summer 2017 July 15, 2017

Please fill out the attendance sheet!

If you added this class in the last week: I will be sending out an email with last week's lecture notes.

Suggestions Box: Feedback and suggestions are important to the success of this class and my experience as a teacher, so please send comments to alexawding@gmail.com!

1 Lecture 1 Recap

- Randomness and Random Experiments
- Naive Definition of Probability

$$P(A) = \frac{\text{\# favorable outcomes}}{\text{\# unfavorable outcomes}}$$

- Non-Naive Probability: The Axioms of Probability probability is a function that takes an event from a sample space and assigns it to a real number between 0 and 1. This function must satisfy the following rules:
 - 1. $P(A) \ge 0$
 - 2. P(S) = 1
 - 3. If A_1, A_2 ... are disjoint (mutually exclusive) events, then

$$P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$$

Intuition: events that are more probable are "assigned" to a larger number. Probabilities of events in a sample space must sum up to 1, since the probability of being in the sample space must be 1 =certain. If two events are mutually exclusive, then the prob of either happening is the sum of the probs=

- Independence
- Conditional Probability and Bayes' Rule

Conditional Probability: probability of one event A occurring under the condition that we know the outcome of another event B. Compare Prior vs. Posterior Probability.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' Rule:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

• PUZZLE: The Birthday Problem

Lecture 2 2

 σ

Warmup Puzzles 2.1

1. More Disease Testing

Example taken from: Blitzstein & Huang: Introduction to Probability.

Suppose you, an esteemed doctor, are testing for a disease that affects 1\% of the population, and the test is advertised as "95% accurate", meaning that if we define T as "positive test", T^c as "negative test", D as "having disease" and D^c as "not having disease":

$$P(T|D) = P(T^c|D^c) = 0.95$$

	Thomas Bayes, an esterositive. What is the			The test comes back
P	positive. What is the	e probability that	u se.	

2. WARMUP PUZZLE: The Prosecutor's Fallacy

Example taken from: Blitzstein & Huang: Introduction to Probability. Also referenced on Wikipedia In 1998, Sally Clark was accused of killing her first child at 11 weeks of age and then her second child at 8 weeks of age. During her court trial, the expert witness testified that the probability of two children in the same family dying from SIDS (i.e. spontaneous natural causes) is about 1 in 73 million.

The prosecutor says: "Since the probability of her children dying by chance is so low, that means that the probability that she committed a crime given that her children are dead is high". What's wrong with this logic?

2.2 Random Variables

examples?

Distribution:	RVs: Use capital letters λ . The distribution of a RV is of real numbers such that	s the collection o		he form $P(X \in \mathcal{C})$
Notation for I has a name:	Distributions: For a RV	X, we notate its	distribution like this	if the distribution
	$X \sim$	Blah (parameter	rs)	
Probabilities of	events concerning RVs are	still probabilities	s, so they follow the a	xioms!
Continuous	vs. Discrete			
Discrete RV:	an only take on a finite n rent values	umber of differen	nt values, or at least a	a countably infini
sequence of diffe		(C.	.1	
sequence of diffe	7: Uncountably infinite see	quence (for exam	ipie, an interval of the	e real numbers).

• Support of a RV: another name for the sample space. What is the sample space of all the above

2.3 Probability Mass Function (PMF)

									_		_			_	_	_	_	
ullet	For a	discrete	RV X	, the	PMF	is	defined	as	the	function	where,	for a	on	the	real	numb	er l	line:

$$f(x) = P(X = x)$$

Sometimes f(x) is written as $f_X(x)$ for clarity. PMF fully defines a distribution

• Revisiting Coin Flips and learning notation: Let Y ("Capital Y") be a Random Variable representing the outcomes of a coin toss

A single coin flip is an example of a Bernoulli Distributed Event!

• Bernoulli Distribution: A RV takes on value 1 with probability **p**, and 0 with probability 1-p. In other words, the outcomes are Boolean. The parameter is **p** and takes on values from 0 to 1 (because it reflects probability).

• Binomial Distribution: A binomial RV is the sum of independent Bernoulli RVs with the same parameter. The Binomial has parameters n and p, where n is number of trials, p is probability of each of these trials taking on value 1.

Intuition/Story: Binomial Distribution reflects the number of successes in n independent trials where the probability of success on each trial is p

$$X \sim Bin(n, p)$$

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$

• Cumulative Distribution Function (CDF): Reflects the probability of the RV being less than x. Always non-decreasing, and right-continuous

$$F_X(x) = P(X \le x)$$

ullet PMF and CDF are two ways to describe the distribution of a discrete random variable. Diagrams from Wikipedia

2.4 Continuous Random Variables

- Continuous: Possible values of the RV takes on a subset of the real number line (ex: Blood Pressure)
- Suppose you have a RV X which is distributed according to a continuous distribution. Then what is P(X = x) or $f_X(x)$ for some x in the support?

- Probability Density Function: a function that gives the "probability density" / likelihood (not the probability!) of observing some value of a random variable. We usually have to evaluate **integrals** of PDFs, to find the probability that the RV takes on a value in a certain interval.
- PDFs must integrate to 1 over the support. Intuition: the "Area under the whole curve" must be 1, just like discrete probabilities must sum to 1
- The **Normal Distribution** is a very special continuous distribution (see below)
- VISUAL EXAMPLE: Let Z be a RV describing the blood pressure of a randomly selected person.

2.5 Independence of RVs

• Independence of Events: A and B are independent $(A \perp B)$ if

$$P(A \cap B) = P(A)P(B)$$

- Notation for AND/Intersection: $A \cap B$ is sometimes written as A, B
- Random Variables X and Y are independent if

$$P(X=x,Y=y)=P(X=x)P(Y=y) \text{ for Discrete RV X and Y}$$

$$P(X\leq x,Y\leq y)=P(X\leq x)P(Y\leq y) \text{ for both Discrete and Continuous RV X and Y}$$

- Independent and Identically Distributed (IID): RVs are independent and each distributed the same way
- In other words, Binomial is a sum of IID Bernoullis!

$$X_1...X_n \sim Bern(p)$$

 $Y = \sum_{i=1}^n X_i \sim Bin(n, p)$

2.6 Normal Distribution: A very special continuous distribution

- Also known a THE BELL CURVE
- Let X be a RV, and let

$$X \sim Normal(\mu, \sigma^2)$$

This means that X is distributed normal with parameters mean = μ and variance σ^2

• Normal Distribution Density: is Symmetrical, peaks in the middle at the mean. The Variance reflects how "spread out" the distribution is.

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

• **Z Score:** How many standard deviations (σ) away from the mean μ is your value?

$$Z = \frac{x - \mu}{\sigma}$$

• 68, 95, 99.7 Rule: Reflects the probabilty that an observation of a RV falls within 1, 2 and 3 standard deviations from the mean. In a diagram:

Suppose that blood glucose in a patient population is distributed Normally with mean 15 and variance 4. In other words:

$$X \sim N(\mu = 15, \sigma^2 = 4)$$

What is the probability that blood glucose is between 13 and 17?

What	is the	probability	that	blood	alueceo i	e hotwoon	11	and	15?
wnat	is the	probability	unau	biood	grucose r	s between	11	and	TO:

- Normal Distribution describes many natural phenomena due to the **Central Limit Theorem**
- Central Limit Theorem (Casual Definition): given a sufficiently large random sample from a population with a finite level of variance, the mean of all samples from the same population will be approximately equal to the mean of the population.
- Central Limit Theorem (Less Casual Definition): the sum of IID random variables (with finite variance) tends toward a normal distribution, even if the RVs themseleves are not normally distributed.
- Normal approximations of distributions (ex: Binomial)

2.7 Executive Summary

• Random variables map outcomes of an experiment to the real number line

- For discrete RVs, the Probability Mass Function describes the probability of observing certain outcomes.
- Bernoulli Distributed Rvs, which are discrete, take on values 1 or 0 with some probability p. p is the only parameter.
- Binomial Distributed RVs, which are also discrete, are the sum of independent Bernoulli RVs. They represent the number of 1s in n independent trials here the probability of getting a 1 in each trial is p. Thus, n and p are the parameters of a Binomial.
- Continuous RVs are described by a Probability Density Function, rather than a Probability Mass Function. We usually evaluate the probability of observing a value in some interval, rather than the probability of observing a given value.
- The Normal Distribution is a continuous distribution with parameters: mean and variance.
- The Normal Distribution has special properties, including the Empirical Rule and usefulness in describing natrual phenomena.