A vector space $V$ over a field $F$ has the operations of addition and scalar multiplication, and satisfies several basic laws. A vector space in a vector space is a subspace.

A vector $v \in V$ is a linear combination of vectors of $S \subseteq V$ if there exist a finite number of vectors $u_{1}, u_{2}, \ldots u_{n} \in S$ and scalars $a_{1}, a_{2}, \ldots a_{n} \in F$ such that

$$
v=a_{1} u_{1}+\cdots+a_{n} u_{n} .
$$

If 0 can be nontrivially written in this form, $S$ is linearly dependent. The set of all v in the above for is the subspace generated (spanned) by S .

A basis $\beta$ for V is a linearly independent subset of V that generates V .
Replacement Theorem: (Simplified) Every linearly independent set can be made into a basis by adding elements.

Every basis for V contains the same number of vectors. The unique number of vectors in each basis is the dimension of $\mathrm{V}(\operatorname{dim}(\mathrm{V}))$.


Every vector space has a basis.

For vector spaces V and W over F , a function $T: V \rightarrow W$ is a linear transformation (homomorphism) if for all $x, y \in V$ and $c \in F$,
(a) $T(x+y)=T(x)+T(y)$
(b) $T(c x)=c T(x)$

The null space or kernel is the set of all vectors $x$ in $V$ such that $T(x)=0$.

$$
N(T)=\{x \in V \mid T(x)=0\}
$$

The range or image is the subset of W consisting of all images of vectors in V .

$$
R(T)=\{T(x) \mid x \in V\}
$$

Both are subspaces. nullity $(T)$ and $\operatorname{rank}(T)$ denote the dimensions of $N(T)$ and $R(T)$, respectively.

Dimension Theorem: If V is finite-dimensional, nullity $(\mathrm{T})+\operatorname{rank}(\mathrm{T})=\operatorname{dim}(\mathrm{V})$
Linear transformations (over finite-dimensional vector spaces) can be viewed as left-multiplication by matrices, so linear transformations under composition and their corresponding matrices under multiplication follow the same laws. This is a motivating factor for the definition of matrix multiplication. Facts about matrices can be proved by using linear transformations, or vice versa.

Matrix product:
Let A be a $m \times n$ and B be a $n \times p$ matrix. The product AB is the $m \times p$ matrix with entries

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}, 1 \leq i \leq m, 1 \leq j \leq p
$$

Interpretation of the product AB:

1. Row picture: Each row of $A$ multiplies the whole matrix $B$.
2. Column picture: $A$ is multiplied by each column of $B$. Each column of $A B$ is a linear combination of the columns of $A$, with the coefficients of the linear combination being the entries in the column of $B$.
3. Row-column picture: $C_{i j}$ is the dot product of row $I$ of $A$ and column $j$ of $B$.

The matrix representation of T in $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma$ is $A=[T]_{\beta}^{\gamma}$. Load the coordinates of $T\left(v_{i}\right)$ into the ith column. $\left[I_{V}\right]_{\beta}^{\gamma}$ changes $\beta$-coordinates to $\gamma$-coordinates. So:

$$
\begin{gathered}
{[T]_{\gamma}=\left[I_{V}\right]_{\gamma}^{\beta}[T]_{\beta}\left[I_{V}\right]_{\beta}^{\gamma}} \\
B=Q A Q^{-1}
\end{gathered}
$$

| Linear transformations $T$, U | Matrices $A, B$ |
| :--- | :--- |
| $\operatorname{rank}(T U) \leq \min (\operatorname{rank}(T), \operatorname{rank}(\mathrm{U}))$ | $\operatorname{rank}(\mathrm{AB}) \leq \min (\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{B}))$ |

-3-

## Fundamental Theorem of Linear Algebra (Part 1):

Dimensions of the Four Subspaces: A is $m x n$, $\operatorname{rank}(A)=r$ (If the field is complex, replace $A^{T}$ by $A^{*}$.)

-4-
The determinant (denoted $|A|$ or $\operatorname{det}(A))$ is a function from the set of square matrices to the field $F$, satisfying the following conditions:

1. The determinant of the $n x n$ identity matrix is 1 , i.e. $\operatorname{det}(I)=1$.
2. If two rows of $A$ are equal, then $\operatorname{det}(A)=0$, i.e. the determinant is alternating.
3. The determinant is a linear function of each row separately, i.e. it is $n$-linear. That is, if $a_{1}, \ldots a_{n}, u, v$ are rows with $n$ elements,

$$
\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{r-1} \\
u+k v \\
a_{r+1} \\
\vdots \\
a_{n}
\end{array}\right)=\operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{r-1} \\
u \\
a_{r+1} \\
\vdots \\
a_{n}
\end{array}\right)+k \operatorname{det}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{r-1} \\
v \\
a_{r+1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

## These properties completely characterize the determinant.

Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction.
(Row)

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}=\sum_{j=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

(Column)

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j}=\sum_{i=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)
$$

where $M_{i j}$ is A with the th row and the column removed.

## Cramer's Rule:

If A is a nxn matrix and $\operatorname{det}(A) \neq 0$ then $A x=b$ has the unique solution given by

$$
x_{i}=\frac{\operatorname{det}\left(B_{1}\right)}{\operatorname{det}(A)}, 1 \leq i \leq n
$$

Where $B_{i}$ is A with the th column replaced by b . If $\operatorname{det}(A)=0$, then A is singular (has no inverse).

Let T be a linear operator (or matrix) on V . A nonzero vector $v \in V$ is an eigenvector of T if there exists a scalar $\lambda$, called the eigenvalue, such that $T(v)=\lambda v$. The eigenspace of $\lambda$ is the set of all eigenvectors corresponding to $\lambda$ : $E_{\lambda}=\{x \in V \mid T(x)=\lambda x\}$.

The characteristic polynomial of a matrix A is $\operatorname{det}(A-\lambda I)$. The zeros of the polynomial are the eigenvalues of A . For each eigenvalue solve $A v=\lambda v$ to find linearly independent eigenvalues that span the eigenspace.

If there are $n$ linearly independent eigenvalues, $T(A)$ is diagonalizable:

$$
\begin{gathered}
{[T]_{\gamma}=\left[I_{V}\right]_{\gamma}^{\beta}[T]_{\beta}\left[I_{V}\right]_{\beta}^{\gamma}} \\
A=Q \Lambda Q^{-1}
\end{gathered}
$$

Where $\Lambda=[T]_{\beta}$ is a diagonal matrix.
Applications to recursive sequences, probability (Markov chains).
-6-
The incidence matrix of a graph: A has a row and column for each vertex, and $A_{i j}=1$ if vertices $i$ and $j$ are connected by an edge, and 0 otherwise.

The incidence matrix A for a family of subsets $\left\{S_{1}, \ldots, S_{n}\right\}$ containing elements $\left\{x_{1}, \ldots, x_{m}\right\}$ has $A_{i j}=\left\{\begin{array}{l}1 \text { if } x_{i} \in S_{j} \\ 0 \text { if } x_{i} \notin S_{j}\end{array}\right.$. Exploring $A A^{T}$ and using properties of ranks, determinants, linear dependency, etc. may give conclusions about the sets. Working in the field $\mathbb{Z}_{2}$ on problems dealing with parity may help.

