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These notes arose from my attempt to be more rigorous and straightforward about entropy
than, say, Baierlein. I also wanted to figure out why we defined S = kB log Ω.

First, we need to make the second law of thermodynamics hold:

∆S ≥ 0, (1)

for an isolated system. So, we need S to be an increasing function of the multiplicity, Ω.
Furthermore, let us assume that S is extensive; this clearly makes sense, since the multiplicity
grows as N does. This turns out to have a nice consequence: assuming S is extensive gives
us a definition of temperature (in thermal equilibrium).

If we have a system placed inside some other system, such that the composite system is
isolated (so (1) applies) then we have

Stot = Sin + Sout,

so that at thermal equilibrium,

∂Stot
∂Ein

=
∂Sin(Ein)

∂Ein
+
∂Sout(Etot − Ein)

∂Ein
=
∂Sin(Ein)

∂Ein
− ∂Sout(Eout)

∂Eout
= 0,

or

f(Tin) =
∂Sin
∂Ein

=
∂Sout
∂Eout

= f(Tout). (2)

This follows from the fact that Tin = Tout expresses the condition for thermal equilibrium, but
so does ∂Sin

∂Ein
= ∂Sout

∂Eout
, since this maximizes the entropy of the system. (The left side depends

only on state variables for the inside, while the right depends only on state variables for the
outside, so these must be functions of temperature).

We can arrive at this equation from another method, and in so doing gain information about
f(T ). Say we have two systems in thermal contact with each other, but isolated from the
rest of the universe. If (∂S1/∂E1) > (∂S2/∂E2), then the total entropy will be increased if
system 2 gives energy to system 1. But, this is just the statement that system 2 is hotter
than system 1. So, f(T ) must be a decreasing function of only temperature (since this
derivative alone determines hotness). We can now justify the “no work done” constraint on
the derivative because if work is done, then we have dE = dEwork + dE∆S, and this division
can be chosen arbitrarily. The only way to learn about how to maximize total entropy
through this derivative is by specifying that all energy changes go toward changing entropy;
this is equivalent to no work being done.

This line of reasoning also shows that negative temperatures are hotter than positive ones.

Interestingly, in deriving this we never used the explicit form of S. We only used the fact
that S is extensive and the second law of thermodynamics. However, these conditions are
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equivalent to S = kB log Ω. To see this, note that the second law of thermodynamics demands
that S be an increasing function of only Ω: S = g(Ω). Then, since for a composite system
we have Ω = Ω1Ω2, the extensivity of entropy demands that

g(Ω1Ω2) = g(Ω1) + g(Ω2).

Since g increases monotonically with its argument, it has an inverse:

Ω1Ω2 = g−1(g(Ω1) + g(Ω2)) = g−1(g(Ω1))g−1(g(Ω2)).

So, we need to find a function h = g−1 such that for any a, b ∈ R, we get

h(a)h(b) = h(a+ b).

(Technical note: this doesn’t actually have to hold for all a, b ∈ R, but rather only for those
a, b that are in the range of g, that is, a, b ∈ g(R+\{0}). Below, we only assume that 0 is in
this range, as well as a tiny interval containing 0 so we can take limits. However, this isn’t
really an assumption, since if Ω1 = 1 then we have g(Ω2) = g(1) + g(Ω2), which proves that
g(1) = 0, so 0 is in the range of g. Furthermore, since g is continuous, an interval containing
0 is in the range of g).

Note first that if b = 0 then
h(a)h(0) = h(a),

so that h(0) = 1. Next,

h′(x) = lim
δ→0

h(x+ δ)− h(x)

δ

= lim
δ→0

h(x)h(δ)− h(x)h(0)

δ

= lim
δ→0

h(δ)− h(0)

δ
h(x)

= h′(0)h(x).

Solving this differential equation gives

h(x) = ex/kB ,

where kB = 1/h′(0), so that
g(Ω) = h−1(Ω) = kB log Ω.

(This is the most general solution).

We now need to choose f(T ) to be consistent with historical convention for what defines
temperature. For the best example from history, we go to the ideal gas:

E/N =
3

2
kBT =

〈p2
x + p2

y + p2
z〉

2m
=

3〈p2
x〉

2m
, PV = NkBT. (3)
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Fluctuations are negligible for a large system, so 〈p2
x〉 ≈ 〈px〉2. Therefore, for most particles,

−c
√
mkBT ≤ px ≤ c

√
mkBT ,

for some constant c > 0. Similarly, we have

−L/2 ≤ x ≤ L/2.

So, the multiplicity for position Ωx,y,z = V N , while the multiplicity for momentum is, for
some constant a > 0,

Ωp = a(mkBT )3N/2.

Therefore,
Ω = aV N(mkBT )3N/2,

and

S = kB log (aV N(mkbT )3N/2) = kB log a+NkB log V +
3

2
NkB log (mkBT ).

Using the relation

T =
2E

3NkB
,

we obtain

S = stuff independent of E +
3

2
NkB log

2Em

3N
,

or

S = stuff independent of E +
3

2
NkB logE.

Therefore,

f(T ) =

(
∂S

∂E

)
V, other external parameters

=
3NkB

2E
= 1/T.

Since f is the same for every system (this follows from (2) and T1 = T2), this gives(
∂S

∂E

)
V, other external parameters

= 1/T.

This equation holds whenever we have thermal equilibrium. Since reversible changes are slow
and maintain thermal equilibrium, we have for reversible changes where no work is done:

dS = d̄Q/T. (4)

This is because dE = d̄Q+d̄W, and with fixed external parameters, d̄W = 0, so that dE = d̄Q.

The goal is now to prove that this relation holds for any reversible change. However, this
follows from the fact that work is reversible, so that by definition dS = 0 for an adiabatic
(only work-doing) change. Since S is a state variable (since multiplicity is), it does not
matter if we first do an adiabatic change and then do work, or if we do it all at the same
time, or anything else like that: the change in entropy is the same. So, for a reversible change
we can separate the work-doing (dS = 0) and adiabatic (dS = d̄Q/T ) stages, proving (4) for
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any reversible change. Note that (4) holds for our system under consideration; obviously,
since the change is reversible (dStot = 0) we must have dSrestofuniverse = −d̄Q/T .

Lastly, we wish to obtain
dS ≥ d̄Q/T

in general, where equality holds only for reversible processes. Suppose we have 2 systems in
thermal contact; the composite system is isolated. Then, if a change occurs, we have

dS = dS1 + dS2 ≥ 0,

with equality only for reversible processes. Now, suppose that system 2 is really big compared
to system 1 (i.e. a reservoir), so that a little thermal change does not appreciably change
the temperature of system 2, and neither does it displace it from equilibrium. Then, we may
approximate this change in system 2 as reversible, so that

dS2 = −d̄Q/T,

where d̄Q is the amount of heat transferred from system 2 to system 1. Then, we have
dS1 −d̄Q/T ≥ 0, or

dS1 ≥
d̄Q

T
.

Since we can imagine such a composite system & reservoir setup for any system and for any
process, we have proved that dS ≥ d̄Q/T holds in general.

So, now we have, in general:

dE = d̄Q+d̄W ≤ TdS +d̄W,

where equality holds only for reversible processes. (Note: this only holds for positive tem-
perature. If T < 0, then TdS ≤ d̄Q).

Now, assume that d̄W can be expressed in terms of exact differentials of state functions. For
concreteness, assume d̄W = −PdV . Then, we have

dE ≤ TdS − PdV.

However, we can take an identical system reversibly from the initial to the final state. (Recall
that the condition for reversibility is dS = d̄Q/T , not dS = 0, so that we can in fact get
from any initial state to any final state reversibly by adding heat/doing stuff really slowly).
Since equality in the above equation holds in this case, and since all variables involved are
state variables, equality must hold in general, even for irreversible processes:

dE = TdS − PdV.

We end with the reason why slow/reversible work doesn’t change S: in this case, ∆S =
q/T = 0. Energy contributed is in the form of ordered work, such as moving a piston, and
therefore doesn’t change the multiplicity, as each possible microstate before the change would
evolve in a deterministic way, under the influence of the work, into a given final microstate,
so there is a 1-1 correspondence.
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