Course Name: Hardcore Mechanics Problems \#

Ky-Anh Tran

11/11/2009

Problem 1 points aimed at each other

Here are some sample problems we will consider in this class, feel free to tinker your mind with them.

3 points are located at the vertices of an equilateral traingle whose side equals a. They all start moving simultaneously with velocity v constant in magnitude, with the first point heading continually for the second, the second for the third, and the third for the first. How soon will the points converge.

Problem 2 continued, points aimed at each other

This is an extension of the idea from the last problem and requires some calculus concepts.

Point A moves uniformly with velocity v so that the vector \vec{v} is continually aimed at point B , which itself is moving rectilinearly and uniformly with velocity $u<v$. At the initial moment of time $\vec{v} \perp \vec{u}$ and the points are spearated by a distance l. How soon will the points converge.

Problem 3 blocks connected by spring

2 blocks, of mass m_{1} and m_{2} are connected by a spring of rest length l_{0} and elastic constant k. They are at rest on a frictionless horizontal plane. A constant force \vec{F} pulls horizontally one of the masses. What is the maximum and minimum separation of the blocks as time passes?

Problem 4 Jumping ring

A small mass A is fixed to the inside of a thin, rigid ring of radius R and mass equal to that of mass A. The hoop rolls without slipping over the horizontal plane; a the moments when the body A gets into the lower position, the center of the hoop moves with velocity v_{0}. At what values of v_{0} will the hopp move without bouncing?

