Home work I Solutions

Extend lines PT and PA, to points B and C respectively.
Since lines $P T$ and $P A$ are tangent to the circle, $\angle X A C=\frac{\widehat{X A}}{2}$ and $\angle B T X=\frac{\overparen{T X}}{2} . \quad \angle A X T=\frac{\overparen{T A}}{2}$, and $\angle T P A=40^{\circ}$.
We also know that $\widehat{T X}+\widehat{X A}+\widehat{T A}=360^{\circ}$, and $\angle T P A+\angle P A X+\angle A X T+\angle X T P=360^{\circ}$.

$$
\begin{align*}
& \angle P A X=180^{\circ}-\angle X A C=180^{\circ}-\frac{\overparen{X A}}{2} \tag{2}\\
& \angle X T P=180^{\circ}-\angle B T X=180^{\circ}-\frac{\overparen{T X}}{2}
\end{align*}
$$

Plug into (2): $\quad \angle T P A+\left(180^{\circ}-\frac{X A}{2}\right)+\left(180^{\circ}-\frac{T X}{2}\right)+\angle A X T=360^{\circ}$

$$
\begin{aligned}
\angle T P A=40^{\circ} & \Rightarrow \quad 40^{\circ}+360^{\circ}-\frac{(\widehat{X A}+\overparen{T X})}{2}+\angle A X T=360^{\circ} \\
& \Rightarrow \quad 40^{\circ}-\frac{(\widehat{X A}+\overparen{T X})}{2}+\angle A X T=0^{\circ}
\end{aligned}
$$

Plug in (1): $\quad 40^{\circ}-\frac{360^{\circ}-T A}{2}+\angle A X T=0^{\circ}$

$$
\begin{aligned}
& \Rightarrow 40^{\circ}-180^{\circ}+\frac{T A}{2}+\angle A X T=0^{\circ} \\
\angle A X T=\frac{T A}{2} & \Rightarrow 2(\angle A X T)=180^{\circ}-40^{\circ}=140^{\circ} \\
& \Rightarrow \angle A X T=70^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \angle A B C=60^{\circ} \Rightarrow \overparen{B C}=2 \cdot 60^{\circ}=120^{\circ} \\
& \angle B C D=70^{\circ} \Rightarrow \overparen{B D}=2 \cdot 70^{\circ}=140^{\circ} \\
& \overparen{C D}=360^{\circ}-\overparen{B C}-\overparen{B D}=360^{\circ}-120^{\circ}-140^{\circ}=100^{\circ} \\
& \angle C B D=\frac{\overparen{C D}}{2}=\frac{100^{\circ}}{2}=50^{\circ}
\end{aligned}
$$

3.

(a)

$$
\begin{aligned}
\angle F C A & =180^{\circ}-\angle A C B \\
& =\angle B A C+\angle C B A
\end{aligned}
$$

Since the angles in a triangle add up to 180°.
(b)

$$
\begin{aligned}
& \angle F C A=180^{\circ}-\angle A C B \\
& \angle E B C=180^{\circ}-\angle A B C \\
& \angle D A B=180^{\circ}-\angle B A C
\end{aligned}
$$

$$
\Rightarrow \angle F C A+\angle E B C+\angle D A B=3 \cdot 180^{\circ}-(\angle A C B+\angle A B C+\angle B A C)
$$

$$
=3.180^{\circ}-180^{\circ}
$$

$$
=360^{\circ}
$$

Therefore the sum of the exterior angles of a triangle is 360°.
4.

Show: $\angle E=\angle F$.
$\left.\begin{array}{l}\angle E=\frac{\overparen{A B}}{2} \\ \angle A G B=\frac{\overparen{A B}}{2}\end{array}\right\} \Rightarrow \begin{aligned} & \angle E=\angle A G B \text { (they are } \\ & \text { inscribed from the } \\ & \text { same arc) }\end{aligned}$
$\angle A G B=\angle D G C$ because they are vertical angles.
$\left.\begin{array}{l}\angle D G C=\frac{\overparen{D C}}{2} \\ \angle F=\widehat{D C}\end{array}\right\} \Rightarrow \begin{aligned} & \angle F=\angle D G C \text { (they are } \\ & \text { inscribed from same arc) }\end{aligned}$
Thus, $\angle E=\angle A G B=\angle D G C=\angle F$.
5.

$$
\begin{aligned}
& \angle A=85^{\circ}=\frac{\overparen{B C D}}{2} \Rightarrow \overparen{B C D}=2.85^{\circ} \\
&=170^{\circ} \\
& \widehat{B A D}=360^{\circ}-\overparen{B C D}=190^{\circ} \\
& \angle C=\frac{\overparen{B A D}}{2}=\frac{190^{\circ}}{2}=95^{\circ}
\end{aligned}
$$

$\angle B$ and $\angle D$ should also add up to 180° (supplementary).

