A vector space \(V \) over a field \(F \) has the operations of addition and scalar multiplication, and satisfies several basic laws. A vector space in a vector space is a subspace.

A vector \(v \in V \) is a linear combination of vectors of \(S \subseteq V \) if there exist a finite number of vectors \(u_1, u_2, \ldots u_n \in S \) and scalars \(a_1, a_2, \ldots a_n \in F \) such that

\[
v = a_1 u_1 + \cdots + a_n u_n.
\]

If 0 can be nontrivially written in this form, \(S \) is linearly dependent. The set of all \(v \) in the above form is the subspace generated (spanned) by \(S \).

A basis \(\beta \) for \(V \) is a linearly independent subset of \(V \) that generates \(V \).

Replacement Theorem: (Simplified) Every linearly independent set can be made into a basis by adding elements.

Every basis for \(V \) contains the same number of vectors. The unique number of vectors in each basis is the dimension of \(V \) (\(\dim(V) \)).

Every vector space has a basis.
For vector spaces V and W over F, a function $T: V \to W$ is a linear transformation (homomorphism) if for all $x, y \in V$ and $c \in F$,

(a) $T(x + y) = T(x) + T(y)$

(b) $T(cx) = cT(x)$

The **null space** or kernel is the set of all vectors x in V such that $T(x) = 0$.

$$N(T) = \{x \in V | T(x) = 0\}$$

The **range** or image is the subset of W consisting of all images of vectors in V.

$$R(T) = \{T(x) | x \in V\}$$

Both are subspaces. **nullity**(T) and **rank**(T) denote the dimensions of $N(T)$ and $R(T)$, respectively.

Dimension Theorem: If V is finite-dimensional, $\text{nullity}(T) + \text{rank}(T) = \text{dim}(V)$

Linear transformations (over finite-dimensional vector spaces) can be viewed as left-multiplication by matrices, so linear transformations under composition and their corresponding matrices under multiplication follow the same laws. This is a motivating factor for the definition of matrix multiplication. Facts about matrices can be proved by using linear transformations, or vice versa.

Matrix product:

Let A be a $m \times n$ and B be a $n \times p$ matrix. The product AB is the $m \times p$ matrix with entries

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}, \ 1 \leq i \leq m, \ 1 \leq j \leq p$$

Interpretation of the product AB:

1. **Row picture**: Each row of A multiplies the whole matrix B.
2. **Column picture**: A is multiplied by each column of B. Each column of AB is a linear combination of the columns of A, with the coefficients of the linear combination being the entries in the column of B.
3. **Row-column picture**: C_{ij} is the dot product of row i of A and column j of B.
The matrix representation of T in $\beta = \{v_1, ..., v_n\}$ and γ is $A = [T]_\beta^\gamma$. Load the coordinates of $T(v_i)$ into the ith column. $[I_V]_\beta^\gamma$ changes β-coordinates to γ-coordinates. So:

$$[T]_\gamma = [I_V]_\gamma^\beta [T]_\beta^\gamma$$

$$B = QAQ^{-1}$$

<table>
<thead>
<tr>
<th>Linear transformations T, U</th>
<th>Matrices A, B</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank$(TU) \leq \min$rank$(T), \text{rank}(U))$</td>
<td>rank$(AB) \leq \min$rank$(A), \text{rank}(B))$</td>
</tr>
</tbody>
</table>

- 3 -

Fundamental Theorem of Linear Algebra (Part 1):

Dimensions of the Four Subspaces: A is $m \times n$, rank$(A)=r$ (If the field is complex, replace A^T by A^*.)

- **Row space** $C(A^T)$
 - $\{A^T y\}$
 - Dimension r

- **Column space** $C(A)$
 - $\{Ax\}$
 - Dimension r

- **Nullspace** $N(A)$
 - $\{x|Ax = 0\}$
 - Dimension $n-r$

- **Left nullspace** $N(A^T)$
 - $\{y|A^T y = 0\}$
 - Dimension $m-r$

$$F^n = C(A)^T \oplus N(A)$$

$$F^m = C(A) \oplus N(A^T)$$
The **determinant** (denoted $|A|$ or $\det(A)$) is a function from the set of square matrices to the field F, satisfying the following conditions:

1. The determinant of the nxn identity matrix is 1, i.e. $\det(I) = 1$.
2. If two rows of A are equal, then $\det(A) = 0$, i.e. the determinant is alternating.
3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, if $a_1, \ldots a_n, u, v$ are rows with n elements,

$$\det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} = \det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} + k \det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}$$

These properties completely characterize the determinant.

Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction.

(Row)

$$\det(A) = \sum_{j=1}^{n} a_{ij} C_{ij} = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij})$$

(Column)

$$\det(A) = \sum_{i=1}^{n} a_{ij} C_{ij} = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(M_{ij})$$

where M_{ij} is A with the ith row and jth column removed.

Cramer’s Rule:

If A is a nxn matrix and $\det(A) \neq 0$ then $Ax = b$ has the unique solution given by

$$x_i = \frac{\det(B_i)}{\det(A)}, 1 \leq i \leq n$$

Where B_i is A with the ith column replaced by b. If $\det(A) = 0$, then A is singular (has no inverse).
Let T be a linear operator (or matrix) on V. A nonzero vector \(v \in V \) is an **eigenvector** of T if there exists a scalar \(\lambda \), called the **eigenvalue**, such that \(T(v) = \lambda v \). The **eigenspace** of \(\lambda \) is the set of all eigenvectors corresponding to \(\lambda \): \(E_\lambda = \{ x \in V | T(x) = \lambda x \} \).

The **characteristic polynomial** of a matrix A is \(\det(A - \lambda I) \). The zeros of the polynomial are the eigenvalues of A. For each eigenvalue solve \(Av = \lambda v \) to find linearly independent eigenvalues that span the eigenspace.

If there are \(n \) linearly independent eigenvalues, T (A) is diagonalizable:

\[
[T]_\gamma = [I_V]_\beta^T [T]_\beta [I_V]^T_\beta
\]

\[
A = Q\Lambda Q^{-1}
\]

Where \(\Lambda = [T]_\beta \) is a diagonal matrix.

Applications to recursive sequences, probability (Markov chains).

The **incidence matrix** of a graph: A has a row and column for each vertex, and \(A_{ij} = 1 \) if vertices i and j are connected by an edge, and 0 otherwise.

The incidence matrix A for a family of subsets \(\{S_1, ..., S_n\} \) containing elements \(\{x_1, ..., x_m\} \) has \(A_{ij} = \begin{cases} 1 & \text{if } x_i \in S_j \\ 0 & \text{if } x_i \notin S_j \end{cases} \). Exploring \(AA^T \) and using properties of ranks, determinants, linear dependency, etc. may give conclusions about the sets. Working in the field \(\mathbb{Z}_2 \) on problems dealing with parity may help.